Back to top
March 6, 2018
Study: Extrahippocampal high-frequency oscillations during epileptogenesis

An Epilepsia study demonstrates an association between an increased rate of widespread high-frequency oscillations and the later development of epilepsy, suggesting the formation of large-scale distributed pathological networks during epileptogenesis.

Summary: The current study aimed to investigate the spatial and temporal patterns of high-frequency oscillations (HFOs) in the intra-/extrahippocampal areas during epileptogenesis. Local field potentials were bilaterally recorded from hippocampus (CA1), thalamus, motor cortex, and prefrontal cortex in 13 rats before and after intrahippocampal kainic acid (KA) lesions. HFOs in the ripple (100-200 Hz) and fast ripple (250-500 Hz) ranges were detected and their rates were computed during different time periods (1-5 weeks) after KA-induced status epilepticus (SE).

Recurrent spontaneous seizures were observed in 7 rats after SE, and the other 6 rats did not develop epilepsy. During the latent period, the rate of hippocampal HFOs increased at the ipsilateral site of the KA lesion in both groups, and the HFO rate was significantly higher in the animals that later developed epilepsy. Animals that later developed epilepsy also demonstrated widespread appearance of HFOs, in both the ripple and the fast ripple range, whereas animals that did not develop epilepsy only exhibited changes in the ipsilateral intrahippocampal HFO rate. 

Learn More


Related News

March 15, 2018
New Direction For Precision Medicine In Epilepsy

A new approach to precision medicine research reveals that infantile spasms are not only unique clinically, but also biologically. Focus on...

March 15, 2018
A Deep Brain Stimulation System in Epilepsy Clinical Trial...

A research project will evaluate the safety and effectiveness of a surgically implanted device called the Medtronic Activa PC+S System in...

March 14, 2018
Variants in one gene account for 7% of juvenile myoclonic...

An extremely rare genetic variant that affects the maturation, migration, and death of neurons appears to be responsible for about 7% of cases...