Variability in Gene-Sequencing Panels Could Mean Missed Early-Life Epilepsy Diagnoses: Work Featuring CURE Grantee Annapurna Poduri

Epilepsy genetics is an emerging field with increasing therapeutic implications resulting from genetic findings. Despite an overall enthusiasm for precision medicine in epilepsy and other disciplines, there remains no consensus on the approach to genetic testing. A recent study by Berg et al demonstrated a relatively similar diagnostic yield of epilepsy next-generation sequencing (NGS) gene panels compared with whole-exome sequencing (27% vs 33%). Although the utility of NGS panels are consistently demonstrated to our knowledge, no study has systematically evaluated the variability in genes tested among clinically available NGS panels. We compared the potential diagnostic yield of commercially available NGS epilepsy panels to detect the genetic findings identified in a recently published cohort of early-life epilepsy.

Dr. Annapurna Poduri [a CURE grantee] and colleagues from Boston Children’s Hospital compared 10 commercially available NGS gene panels from three major vendors (Athena Diagnostics, Ambry Genetics and GeneDx).

Genetic Literacy Series: Primer Part 2—Paradigm Shifts in Epilepsy Genetics

This is the second of a 2?part primer on the genetics of the epilepsies within the Genetic Literacy Series of the Genetics Commission of the International League Against Epilepsy.

In Part 1, we covered types of genetic variation, inheritance patterns, and their relationship to disease. In Part 2, we apply these basic principles to the case of a young boy with epileptic encephalopathy and ask 3 important questions: (1) Is the gene in question an established genetic etiology for epilepsy? (2) Is the variant in this particular gene pathogenic by established variant interpretation criteria? (3) Is the variant considered causative in the clinical context? These questions are considered and then answered for the clinical case in question.

Epilepsy Research Findings: May 2018

This month I would like to share with you several promising treatment and diagnostic advances, and research discoveries. The FDA recently recommended supporting the approval of the New Drug Application for cannabidiol-based drug Epidiolex and also approved Medtronic’s deep brain stimulation therapy for drug-resistant epilepsy. Recent research has also provided the promise of new genetic insight for children with epileptic encephalopathy, and has brought us closer to understanding how to repair a “leaky” blood-brain barrier associated with epilepsy. In contrast to these exciting results, we have also learned that individuals with epilepsy are at an increased risk of dying from suicide and accidents, and a new study has highlighted the high direct costs associated with epilepsy for children with the disorder.

Summaries of all highlighted studies follow below. I’ve organized the findings into four categories: Treatment Advances, Diagnostic Advances, Research Discoveries, and Also Notable.

TREATMENT ADVANCES

GW Pharmaceuticals and U.S. Subsidiary Greenwich Biosciences Announces FDA Advisory Committee Unanimous Recommendation of Support for Epidiolex

GW Pharmaceuticals plc, along with its U.S. subsidiary Greenwich Biosciences, announced that the Peripheral and Central Nervous System Drugs Advisory Committee of the U.S. Food and Drug Administration unanimously recommended supporting the approval of the New Drug Application (NDA) for the investigational cannabidiol oral solution (CBD), also known as Epidiolex®, for the adjunctive treatment of seizures associated with Lennox-Gastaut syndrome (LGS) and Dravet syndrome in patients two years of age and older. If approved, Epidiolex would be the first pharmaceutical formulation of purified, plant-based CBD.

Learn More

Medtronic Receives FDA Approval for Deep Brain Stimulation Therapy for Medically Refractory Epilepsy

Medtronic plc, the global leader in medical technology, announced that the U.S. Food and Drug Administration has granted premarket approval for Medtronic’s Deep Brain Stimulation (DBS) therapy as adjunctive treatment for reducing the frequency of partial-onset seizures in individuals 18 years of age or older who are refractory or drug-resistant to three or more antiepileptic medications. DBS therapy for epilepsy delivers controlled electrical pulses to a target in the brain called the anterior nucleus of the thalamus, which is part of a network involved in seizures.

Learn More

Zynerba Pharmaceuticals Announces Twelve Month Data from STAR 2 Study in Patients with Focal Seizures

Zynerba Pharmaceuticals, Inc reported new longer term open label clinical data from its STAR 2 Study in patients with focal seizures. “The data continues to suggest that focal seizures may be reduced with longer-term exposure to transdermally-delivered CBD,” said Dr. Liza Squires, Zynerba’s Chief Medical Officer. “In this population of patients, the use of ZYN002 for an additional 12 months in STAR 2 was well tolerated and appeared to result in clinically meaningful seizure reductions both across and within the originally randomized STAR 1 groups.”

Learn More

Zynerba Pharmaceuticals Initiates Open-Label Phase 2 Trial of ZYN002 in Developmental and Epileptic Encephalopathies

Zynerba Pharmaceuticals announced that it has initiated the Phase 2 BELIEVE 1 clinical trial, an open label study to assess the safety and efficacy of ZYN002 administered as a transdermal gel to children and adolescents with developmental and epileptic encephalopathy.

Learn More

DIAGNOSTIC ADVANCES

New Testing Provides Better Information for Parents of Children with Epileptic Encephalopathy

Advances in genetic testing offer new insights to parents who have a child with a rare but serious form of epilepsy, epileptic encephalopathy. New ways of sequencing the human genome mean geneticists and genetic counselors have much more to say to parents who wonder if future children might carry the disease, says Dr. Heather Mefford, Associate Professor of Pediatrics (genetic medicine) at University of Washington School of Medicine and Deputy Scientific Director of the Brotman Baty Institute for Precision Medicine, co-senior author of findings published in the New England Journal of Medicine.

Learn More

RESEARCH DISCOVERIES

Repairing a Leaky Blood-Brain Barrier in Epilepsy

In a study of rodent brain capillaries published in the Journal of Neuroscience, Björn Bauer and colleagues identified a seizure-triggered pathway that contributes to blood-brain barrier dysfunction in epilepsy. The blood-brain barrier is a filtering mechanism that lets nutrients into the brain but keeps toxins out. Understanding how a “leaky” blood-brain barrier can lead to seizures is necessary to develop strategies to plug the leak.

Learn More

Hope for New Treatment of Severe Epilepsy

Researchers at Lund University in Sweden succeeded in reducing epileptic activity in the hippocampus. In many severe cases of epilepsy, this is the part of the brain where epileptic seizures start. The researchers used a method known as chemogenetics, which enables them to reduce activity in the specific areas and nerve cells involved in an epileptic seizure, whereas other parts and cells in the body remain unaffected. This is in contrast to current drugs that affect more or less all parts and cells of the body, potentially leading to side-effects.

Learn More

Epilepsy Does Not Impact Likelihood of Pregnancy

Women with epilepsy, without previous infertility and related disorders, were as likely to conceive as their counterparts without epilepsy, according to findings recently published in JAMA Neurology. Dr. Page B. Pennell and colleagues found that 60.7% of women with epilepsy became pregnant versus 60.2% of the control group without epilepsy.

Learn More

Increased Risk of Suicide and Accidental Death Found for People with Epilepsy

A new study has shown that people diagnosed with epilepsy in England and Wales are at increased risk of dying from suicide and accidents. Though the risks of dying from suicide and accidents for people with epilepsy are low in absolute terms (0.3-0.5%), they are higher than in people without epilepsy, says Dr. Hayley Gorton from The University of Manchester.

Learn More

ALSO NOTABLE

What Modern Day Challenges Affect Epilepsy Treatment?

Researchers recently published an article in The Lancet Neurology discussing the difficulties facing seizure detection in patients with epilepsy. In a recent study, Christian Elger and Christian Hoppe determined that a key challenge facing patients is that over 50% of patients under-report the number of seizures they experience, which has a serious impact on how well doctors are able to determine what treatments are most suitable for them. This also calls into question much of the previously published research on epilepsy treatments.

Learn More

Study Finds a High Direct Cost of Epilepsy in Children

A study of children aged 17 years using data from the Medical Expenditure Panel Survey-Household Component found that medical expenditure among children with epilepsy is high. The high expenditure is essentially driven not only by inpatient expenditure but also by home healthcare, outpatient, and medication healthcare expenditures.

Learn More

CURE Discovery: Genetic Research Finds Potential Alternatives to Brain Surgery for Children with Cortical Dysplasia

A Potential Alternative is Already in Clinical Trial

Recent research by CURE grantee Dr. Jeong Ho Lee of the Korea Advanced Institute of Science and Technology has shed important light on the genetic mutations that lead to focal cortical dysplasia, a severe form of pediatric epilepsy that inadequately responds to available treatment options. Genetic mutations were found in the brain tissue of individuals affected by a particular subtype of focal cortical dysplasia (focal cortical dysplasia type II) that is characterized by brain abnormalities, leading to seizures and epilepsy.

Conventional genetic testing methods to identify genetic mutations in those with epilepsy often use blood or saliva from patients. However, these latest results from Dr. Lee and his team suggest that certain epilepsy-related gene mutations may only be detectable when brain tissue is analyzed.

Brain-Only Mutations in Genes that Cause Focal Cortical Dysplasia

By comparing blood and saliva samples to samples of brain tissue from a group of 40 individuals who had previously undergone brain surgery for focal cortical dysplasia type II, Dr. Lee and his team found that a significant number of these individuals (12.5%) had brain-only mutations in genes TSC1 and TSC2. Together with the previous pioneering work of his team to identify brain-only mutations in the MTOR gene in individuals with focal cortical dysplasia type II, they revealed that brain-only mutations in genes within the mTOR brain signaling pathway (including the genes TSC1, TSC2 and MTOR) are found in up to 30% of individuals with focal cortical dysplasia. The fact that these mutations were found only in the brain means that these mutations would be undetectable by conventional genetic testing methods, suggesting that investigation of brain-only mutations should be explored to a greater extent.

In addition to identifying brain-only mutations leading to focal cortical dysplasia, Dr. Lee and his team also addressed the current lack of adequate animal models to better study the disorder. The team was able to successfully recreate the brain-only mutations in genes TSC1 and TSC2 in developing mice, providing a much-needed animal model for further examination of the ways in which gene mutations can lead to focal cortical dysplasia type II.

Clinical Trials for the Treatment of Focal Cortical Dysplasia

Furthermore, the team provided evidence that mTOR inhibitors, such as rapamycin or everolimus, are promising anti-epileptic drugs for the treatment of focal cortical dysplasia. In fact, everolimus is currently under phase II clinical trial for the treatment of focal cortical dysplasia.

As noted by Dr. Lee, because focal cortical dysplasia is a drug-resistant epilepsy, many children with the disorder require invasive brain surgery as treatment. However, even in cases where surgery is performed, up to 40% of these children may still have seizures. By identifying genes associated with focal cortical dysplasia as well as creating a new way of studying the genetic mechanisms behind the disorder, Dr. Lee and his team have made progress towards the creation of novel, non-surgical targets at which to aim treatments for this devastating form of drug-resistant childhood epilepsy.

[1] Lim et al. Somatic mutations in TSC1 and TSC2 cause focal cortical dysplasia. Am J Human Genet 2017; 100(3):454-472.
[2] Guerrini et al. Diagnostic methods and treatment options for focal cortical dysplasia. Epilepsia 2015; 56(11):1669-86.
[3] Gaitanis and Donahue. Focal cortical dysplasia. Ped Neurol 2013; 49:79-87.
[4] Poduri et al. Genetic testing in the epilepsies – developments and dilemmas. Nat Rev Neurol 2014; 10(5):293-299.
[5] Lim et al. Brain somatic mutations in MTOR cause focal cortical dysplasia type II leading to intractable epilepsy. Nat Med 2015; 21(4):395-400.

New Testing Provides Better Information for Parents of Children with Epileptic Encephalopathy

Advances in genetic testing offer new insights to parents who have a child with a rare but serious form of epilepsy, epileptic encephalopathy (EE), found in one of about every 2,000 births and characterized by developmental disabilities as well as horrible seizures.

“New ways of sequencing the human genome mean geneticists and genetic counselors have much more to say to parents who wonder if future children might carry the disease,” says Dr. Heather Mefford, associate professor of pediatrics (genetic medicine) at University of Washington School of Medicine and Deputy Scientific Director of the Brotman Baty Institute for Precision Medicine, co-senior author of findingspublished this week in the New England Journal of Medicine.

A big question from any parent of a child with EE is, “What are the odds that our other children might have this condition?” For decades, parents whose child had epilepsy were told there’s a 1 to 5 percent chance that other children might inherit the mutation. This was based on clinical evidence – the numbers of reoccurrences physicians saw in the clinic.

But armed with more precise testing, the geneticists found parental mosaicism that wasn’t easily detected before in about 10 percent of families, putting these families at higher risk of passing the mutation to another child. What this means in practical terms is that this small group probably accounts for most of the reoccurrences. For some parents, there’s good news: if this parental mosaicism was not detected, your odds of having another such child with epilepsy could be much less than 1 percent.

Critical Review: Can Mutation?Mediated Effects Occurring Early in Development Cause Long?Term Seizure Susceptibility in Genetic Generalized Epilepsies?

Summary: Epilepsy has a strong genetic component, with an ever?increasing number of disease?causing genes being discovered. Most epilepsy?causing mutations are germ line and thus present from conception. These mutations are therefore well positioned to have a deleterious impact during early development. Here [researchers] review studies that investigate the role of genetic lesions within the early developmental window, specifically focusing on genetic generalized epilepsy (GGE). Literature on the potential pathogenic role of sub?mesoscopic structural changes in GGE is also reviewed.

Evidence from rodent models of genetic epilepsy support the idea that functional and structural changes can occur in early development, leading to altered seizure susceptibility into adulthood. Both animal and human studies suggest that sub?mesoscopic structural changes occur in GGE.

The existence of sub?mesoscopic structural changes prior to seizure onset may act as biomarkers of excitability in genetic epilepsies. [Researchers] also propose that presymptomatic treatment may be essential for limiting the long?term consequences of disease?causing mutations in genetic epilepsies.

Study: Effects of [Mutations in Genes] UGT2B7, SCN1A and CYP3A4 on the Therapeutic Response of Sodium Valproate Treatment in Children with Generalized Seizures

PURPOSE: This study aims to evaluate the associations between genetic polymorphisms and the effect of sodium valproate (VPA) therapy in children with generalized seizures.

METHODS: A total of 174 children with generalized seizures on VPA therapy were enrolled. Steady-state trough plasma concentrations of VPA were analyzed. Seventy-six single nucleotide polymorphisms involved in the absorption, metabolism, transport, and target receptor of VPA were identified, and their associations with the therapeutic effect (seizure reduction) were evaluated using logistic regression adjusted by various influence factors.

RESULTS: rs7668282 (UGT2B7, T?>?C, OR?=?2.67, 95% CI: 1.19 to 5.91, P?=?0.017) was more prevalent in drug-resistant patients than drug-responsive patients. rs2242480 (CYP3A4, C?>?T, OR?=?0.27, 95% CI: 0.095 to 0.79, P?=?0.017) and rs10188577 (SCN1A, T?>?C, OR?=?0.40, 95% CI: 0.17 to 0.94, P?=?0.035) were more prevalent in drug-responsive patients compared to drug-resistant patients.

CONCLUSION: In children with generalized seizures on VPA therapy, polymorphisms of UGT2B7, CYP3A4, and SCN1A genes were associated with seizure reduction. Larger studies are warranted to corroborate the results.

‘Missing Mutation’ Found in Severe Infant Epilepsy

Researchers have discovered a “missing mutation” in severe infant epilepsy — long-suspected genetic changes that might trigger overactive, brain-damaging electrical signaling leading to seizures. They also found early indications that specific anti-seizure medications might prevent disabling brain injury by controlling epilepsy during a crucial period shortly after birth.

“These are still early days, but we may be able to use this knowledge to protect the newborn brain and improve a child’s long-term outcome,” said study leader Ethan M. Goldberg, MD, PhD, a pediatric neurologist at Children’s Hospital of Philadelphia.

Goldberg collaborated with European and American researchers in this neurogenetic study of early infantile epileptic encephalopathy, published online Feb. 21, 2018 in Annals of Neurology.

The study focused on mutations in the gene SCN3A. Scientists already knew that the gene had a pattern of high expression in the brain, before and shortly after birth. Variants in SCN3A had also been previously linked to less severe forms of epilepsy, but the current research solidified this link and was the first to establish that SCN3A mutations cause the severe infantile form.

Translating these findings into potential clinical treatments, Goldberg stressed, will require considerable further research — both in nerve cells and in future animal models, in which neurologists can test possible precision-medicine treatments for safety and efficacy before they can be investigated in patients. In addition, the current research allowed the SCN3A gene to be added to an existing diagnostic test, CHOP’s Epilepsy Panel, which uses next-generation sequencing to rapidly test for over 100 genetic causes of childhood epilepsy.

Precise, early diagnosis, added Goldberg, will be crucial, because of the highly regulated timetable of early-life neurological events. “The mutation’s activity in the Nav1.3 sodium ion channel occurs during a short period in newborns, but if we can intervene during that window, we may be able to help prevent long-term neurological injury and benefit patients,” he said.

Variants in one gene account for 7% of juvenile myoclonic epilepsy cases

An extremely rare genetic variant that affects the maturation, migration, and death of neurons appears to be responsible for about 7% of cases of juvenile myoclonic epilepsy.

Variants of the intestinal-cell kinase gene (ICK) occurred in 12 members of a family affected by the disorder and were confirmed in 22 of 310 additional patients, Julia N. Bailey, PhD , of the University of California, Los Angeles, and her colleagues reported in the March 15 issue of the New England Journal of Medicine .

But among these 34 patients, the variant manifested as different epileptic phenotypes, suggesting genetic pleiotropism, the investigators said.

The investigators drew data from the GENESS (Genetic Epilepsies Studies) consortium, which has study sites in the United States, Mexico, Honduras, Brazil, and Japan. The current study from the databank analyzed information from 334 families with genetic generalized epilepsies. Among these, 310 patients had adolescent-onset myoclonic seizures and polyspike waves, or had a diagnosis of JME.

Woman sitting at a laptop participating in a CURE webinar.

Genetic Testing to Develop Personalized Medicine for Epilepsy

This webinar recorded at Columbia University in New York City, focuses on “Genetic Testing to Develop Personalized Medicine in Epilepsy”. In this webinar, learn more about the importance of genetic testing in epilepsy, the different diagnoses you can receive from genetic testing, and what options are available after your testing results. Also, learn how CURE’s Signature Program, the Epilepsy Genetics Initiative or EGI, is helping push the precision medicine movement in epilepsy forward.

The webinar is presented by Dr. David Goldstein, Director of the Institute of Genomic Medicine at Columbia, and also features a Q&A portion. Some of the questions you might hear addressed include:

  • What is the value of genetic testing?
  • How do I go about getting testing ordered for me and/or my child?
  • What type of results can I expect if I do have genetic testing completed?
  • How can knowing the cause of my/my child’s epilepsy help with the available treatment options?
  • How is epilepsy research, like that involved in EGI, helping end the diagnostic odyssey that many patients face?