CURE is the leading nongovernmental agency fully committed to funding research in the epilepsies. CURE is at the forefront of epilepsy research, raising millions to fund innovative research and other initiatives that will lead the way to a cure.

As mothers of children who have been deeply affected by epilepsy, we are extremely grateful for your support and want to share with you some of CURE’s highlights from 2013. We are proud to also declare that 88% of our funds were invested in our mission—among the highest for charities nationwide.

CURE invested more than $4M in research and related activities such as scientific conferences in 2013. The majority supported cutting-edge research grants, of which the applications received were extremely competitive and filled with state-of-the-art science that promises to advance our understanding of the epilepsies. We expanded our global reach, now funding researchers in 13 countries.

CURE was pleased to announce an exciting new partnership which took off in 2013, with the Howard Hughes Medical Institute’s Medical Research Fellows Program. CURE will provide financial support for up to three medical students each year to conduct mentored research on epilepsy.

Also in 2013, we launched the Frontiers in Research Seminar Series. The series is an effort to share innovative epilepsy topics and discoveries with a goal of attracting the best and brightest minds into the field of epilepsy research. We anticipate 10 seminars to be sponsored at different institutions each academic year offering presentations to a wide audience of clinicians, medical students, young investigators, basic science researchers and interested supporters.

The year saw exciting progress for the eight teams of investigators participating in our Infantile Spasms Research Initiative. We continue to support their collaborative research aimed at finding a cure for this rare and devastating childhood epilepsy syndrome. This “dream team” of scientists span adult and pediatric neurology, basic mechanisms of the epilepsies, animal modeling, human genetics and clinical trial design and execution. We are proud to be at the forefront of team science.

Scientific advancements abounded through CURE-sponsored research in 2013, including the discovery by grantee Dr. Peter Crino, who found important new evidence that Human Papillomavirus (HPV), the most common cause of cervical cancer, is linked to epilepsy-causing brain defects that occur in children. This breakthrough discovery may lead to a definable cause and treatment for focal cortical dysplasia type IIb epilepsy.

We were pleased to publish the 2013 State of Research in the Epilepsies Report. Findings include many promising trends, such as the increase in collaboration evident throughout the field. But major challenges were identified, including the sobering news that funding of epilepsy research, per patient affected, continues to be inadequate.

But, we are making strides. Our 15th Annual CURE Chicago Benefit, with more than 1,000 people in attendance, raised an unprecedented $1.2 million. Tireless volunteer energy from coast to coast has driven a record number of activities and fundraisers, without which CURE would not stand where we do today, as the largest private funder of epilepsy research.

2013 was clearly a transformative year. We welcomed new board members from across the country, who bring expertise, talent and insight to our organization. Driven by their passion to find a cure for epilepsy, they join us in thanking you for your commitment and support of biomedical research in this critically important area. The progress we are witnessing is phenomenal because of you. And because of you, too, the future is filled with promise.

With sincere appreciation,

Susan Axelrod
Founding Chair

Gardiner Lapham
Board of Directors Chair
CURE is the leading nongovernmental agency fully committed to funding research in the epilepsies. CURE is at the forefront of epilepsy research, raising millions to fund innovative research and other initiatives that will lead the way to a cure.

As mothers of children who have been deeply affected by epilepsy, we are extremely grateful for your support and want to share with you some of CURE’s highlights from 2013. We are proud to also declare that 88% of our funds were invested in our mission—among the highest for charities nationwide.

CURE invested more than $4M in research and related activities such as scientific conferences in 2013. The majority supported cutting-edge research grants, of which the applications received were extremely competitive and filled with state-of-the-art science that promises to advance our understanding of the epilepsies. We expanded our global reach, now funding researchers in 13 countries.

CURE was pleased to announce an exciting new partnership which took off in 2013, with the Howard Hughes Medical Institute’s Medical Research Fellows Program. CURE will provide financial support for up to three medical students each year to conduct mentored research on epilepsy.

Also in 2013, we launched the Frontiers in Research Seminar Series. The series is an effort to share innovative epilepsy topics and discoveries with a goal of attracting the best and brightest minds into the field of epilepsy research. We anticipate 10 seminars to be sponsored at different institutions each academic year offering presentations to a wide audience of clinicians, medical students, young investigators, basic science researchers and interested supporters.

The year saw exciting progress for the eight teams of investigators participating in our Infantile Spasms Research Initiative. We continue to support their collaborative research aimed at finding a cure for this rare and devastating childhood epilepsy syndrome. This “dream team” of scientists span adult and pediatric neurology, basic mechanisms of the epilepsies, animal modeling, human genetics and clinical trial design and execution. We are proud to be at the forefront of team science.

Scientific advancements abounded through CURE-sponsored research in 2013, including the discovery by grantee Dr. Peter Crino, who found important new evidence that Human Papillomavirus (HPV), the most common cause of cervical cancer, is linked to epilepsy-causing brain defects that occur in children. This breakthrough discovery may lead to a definable cause and treatment for focal cortical dysplasia type II epilepy.

We were pleased to publish the 2013 State of Research in the Epilepsies Report. Findings include many promising trends, such as the increase in collaboration evident throughout the field. But major challenges were identified, including the sobering news that funding of epilepsy research, per patient affected, continues to be inadequate.

But, we are making strides. Our 15th Annual CURE Chicago Benefit, with more than 1,000 people in attendance, raised an unprecedented $1.2 million. Tireless volunteer energy from coast to coast has driven a record number of activities and fundraisers, without which CURE would not stand where we do today, as the largest private funder of epilepsy research.

2013 was clearly a transformative year. We welcomed new board members from across the country, who bring expertise, talent and insight to our organization. Driven by their passion to find a cure for epilepsy, they join us in thanking you for your commitment and support of biomedical research in this critically important area. The progress we are witnessing is phenomenal because of you. And because of you, too, the future is filled with promise.

With sincere appreciation,

Susan Axelrod
Founding Chair

Gardiner Lapham
Board of Directors Chair

Letter from Susan Axelrod and Gardiner Lapham
CURE’s transformative research program has supported more than 165 brilliant scientists and labs in 13 countries. Since its inception in 1998, CURE has raised more than $28 million for research program activities. CURE invests more than 88% of its funds in its mission, among the highest percentage for charities nationwide.
CURE’s transformative research program has supported more than 165 brilliant scientists and labs in 13 countries. Since its inception in 1998, CURE has raised more than $28 million for research program activities. CURE invests more than 88% of its funds in its mission, among the highest percentage for charities nationwide.
Sitting on the side of his daughter’s hospital bed, after brain surgery to determine where her seizures emanated from failed, David Fradkin knew that they had two choices—to give up or to get going. Since giving up was out of the question, David and his then 10 year-old daughter Sarah began to brainstorm ideas. What was initially born out of heartache has led to an extremely successful effort to spread awareness about epilepsy and raise funds for research for a cure. “You can sit around and mope or you can do something about it,” said the Southbury, Connecticut man. “There is no other option.”

“We are just ordinary people doing extraordinary things.”
David Fradkin, Southbury, CT
Sitting on the side of his daughter’s hospital bed, after brain surgery to determine where her seizures emanated from failed, David Fradkin knew that they had two choices—to give up or to get going. Since giving up was out of the question, David and his then 10 year-old daughter Sarah began to brainstorm ideas. What was initially born out of heartache has led to an extremely successful effort to spread awareness about epilepsy and raise funds for research for a cure. “You can sit around and mope or you can do something about it,” said the Southbury, Connecticut man. “There is no other option.”

“We are just ordinary people doing extraordinary things.”

David Fradkin, Southbury, CT
Sarah and her family—including her dad, David; mom, Monica; and brothers, Noah, 11 and Max, 8—have dealt with Sarah’s uncontrollable seizures since she was diagnosed with epilepsy at age 6. Since her diagnosis, Sarah has been on 18 different anti-convulsant medications and a modified ketogenic diet, all of which have failed.

When first diagnosed, Sarah suffered hundreds of seizures a day. Several months later, she experienced a three-year hiatus of seizures, only to have them return again. Then this year, she was seizure-free for another nine months. Once again, they came back.

“We were hoping she had grown out of them,” Monica Fradkin said. “It’s like being punched in the stomach because you are not prepared for it.”

Sarah knows she is a part of a frightening statistic. “One in 26 people get diagnosed (with epilepsy in their lifetime),” Sarah said. “I think it’s important for people to know that.”

The Fradkin family point out that epilepsy affects more people than multiple sclerosis, cerebral palsy, muscular dystrophy and Parkinson’s combined—yet receives fewer federal research dollars per patient than each of these. In addition, more people die each year from epilepsy than do from breast cancer, however there is no comparison to the amount of funding and awareness that breast cancer receives.

So as part of their family’s effort to help with both the awareness and funding for epilepsy research, in 2011, the Fradkins created an annual event called S4 (Sarah & Southbury Strikeout Seizures). The event features a 2.4 mile walk, food, games, a silent auction and more—all to benefit Citizens United for Research in Epilepsy (CURE).

Over the past two years, S4 has raised about $240,000. The 2014 event was held on June 7 and raised more than $100,000, funding a research grant for CURE.

The S4 team includes baseball all-stars such as Paul Molitor; Jim Thome; Ruben Amaro; Tim Wakefield; Carl Willis; Eric Wedge; Chris Carpenter; Pat Hentgen; Sandy Alomar, Jr.; Bruce Bochy; Charles Nagy; Rubby Thompson; Mark Shapiro; Bud Black; Brian Schneider Tom Candiotti; and Buddy Bell, who himself has epilepsy.

Baseball memorabilia and one-of-a-kind experiences with these players, former players and coaches are available for auction before and during the S4 event.

“This S4 team is definitely going to find a cure, not only for Sarah, but for others suffering from epilepsy,” David Fradkin said.

Recently, Sarah spoke at an event in Newtown, Connecticut, in front of over 250 people and told them of her daily struggles, noting that she is one of 3 million people living with epilepsy in the U.S..

Later that night an 11-year-old boy came up to the Fradkins table and introduced himself saying, “I am one of those 3 million people, too.”

When she is not receiving attention for her fundraising efforts, Sarah has similar hopes and dreams like many 13-year-old girls have.

“I’ve always wanted to be an actress,” said the pretty, brown-haired girl, who also excels at swimming and soccer.

And despite the herculean efforts of the family, David Fradkin said they aren’t doing anything that anyone else can’t do.

“We are just ordinary people doing extraordinary things,” he said. “Life is not about waiting for the storm to pass, it’s about learning to dance in the rain.”
Sarah and her family—including her dad, David; mom, Monica; and brothers, Noah, 11 and Max, 8—have dealt with Sarah’s uncontrollable seizures since she was diagnosed with epilepsy at age 6. Since her diagnosis, Sarah has been on 18 different anti-convulsant medications and a modified ketogenic diet, all of which have failed.

When first diagnosed, Sarah suffered hundreds of seizures a day. Several months later, she experienced a three-year hiatus of seizures, only to have them return again. Then this year, she was seizure-free for another nine months. Once again, they came back.

“We were hoping she had grown out of them,” Monica Fradkin said. “It’s like being punched in the stomach because you are not prepared for it.”

Sarah knows she is a part of a frightening statistic. “One in 26 people get diagnosed (with epilepsy in their lifetime),” Sarah said. “I think it’s important for people to know that.”

The Fradkin family point out that epilepsy affects more people than multiple sclerosis, cerebral palsy, muscular dystrophy and Parkinson’s combined—yet receives fewer federal research dollars per patient than each of these. In addition, more people die each year from epilepsy than do from breast cancer, however there is no comparison to the amount of funding and awareness that breast cancer receives.

So as part of their family’s effort to help with both the awareness and funding for epilepsy research, in 2011, the Fradkins created an annual event called S4 (Sarah & Southbury Strikeout Seizures). The event features a 2.4 mile walk, food, games, a silent auction and more—all to benefit Citizens United for Research in Epilepsy (CURE).

Over the past two years, S4 has raised about $240,000. The 2014 event was held on June 7 and raised more than $100,000, funding a research grant for CURE.

The Fradkins are far from alone with their fundraising efforts. David Fradkin, who owns a baseball apparel company, called on a few famous friends for some help.

Sarah Fradkin

Team Captain
Sarah Fradkin

The S4 team includes baseball all-stars such as Paul Molitor; Jim Thome; Ruben Amaro; Tim Wakefield; Carl Willis; Eric Wedge; Chris Carpenter; Pat Hentgen; Sandy Alomar, Jr.; Bruce Bochy; Charles Nagy; Robby Thompson; Mark Shapiro; Bud Black; Brian Schneider Tom Candiotti; and Buddy Bell, who himself has epilepsy. Baseball memorabilia and one-of-a-kind experiences with these players, former players and coaches are available for auction before and during the S4 event.

“Let’s Strikeout Seizures & Cure Epilepsy
www.S4epilepsywalk.com

“This S4 team is definitely going to find a cure, not only for Sarah, but for others suffering from epilepsy,” David Fradkin said.

Recently, Sarah spoke at an event in Newtown, Connecticut, in front of over 250 people and told them of her daily struggles, noting that she is one of 3 million people living with epilepsy in the U.S.

Later that night an 11-year-old boy came up to the Fradkins table and introduced himself saying, “I am one of those 3 million people, too.”

When she is not receiving attention for her fundraising efforts, Sarah has similar hopes and dreams like many 13-year-old girls have.

“I’ve always wanted to be an actress,” said the pretty, brown-haired girl, who also excels at swimming and soccer.

And despite the herculean efforts of the family, David Fradkin said they aren’t doing anything that anyone else can’t do.

“We are just ordinary people doing extraordinary things,” he said. “Life is not about waiting for the storm to pass, it’s about learning to dance in the rain.”
CURE CREW EVENTS

CURE wishes to thank the following individuals and organizations for their remarkable fundraising efforts in 2013.
CURE CREW
EVENTS

CURE wishes to thank the following individuals and organizations for their remarkable fundraising efforts in 2013.
2013 Events

$100,000 and above
- S4 Walk for Epilepsy
 Southbury, CT
- Drive for CURE 2013
 Wheaton, IL
- Kuwait Embassy Dinner 2013
 Washington, DC
- Hope4SUDEP
 Worldwide

$50,000–$99,999
- San Francisco Benefit
 San Francisco, CA
- Christopher Donalty Benefit for a CURE
 Utica, NY

$25,000–$49,999
- Hugh-A-Thon
 Western Springs, IL
- Joey’s Song 2013
 Madison, WI
- Building CURE Globally
 Worldwide
- North Shore Century Ride for CURE
 Chicago, IL
- Madison Friends of CURE 2013
 Madison, WI
- RE: Epilepsy 2013
 Highwood, IL
- Running for Samson
 Cleveland, OH
- Fly for Faith
 Boca Raton, FL
- Clipper Round the World
 Cape Town, South Africa to Western Australia
- Shutouts for Seizures
 Madison, WI
- The Cupid Chase
 Senoia, GA
- Blue Jeans Ball
 Harrisville, RI
- Third Annual Teresa’s Birthday Benefit for CURE
 San Francisco, CA
- Art from the HeART
 Los Angeles, CA
- White House Correspondents Brunch 2013
 Washington, DC
- Houston Dinner 2013
 Houston, TX
- CURE365
 Northbrook, IL
- Fencing for a Cause
 Winnetka, IL
- CURE and the City
 Santa Monica, CA
- Kyle’s Run for a Memory 5K
 Victor, NY
- Maddie’s Marathon
 Washington, DC
- Wrestling for a CURE
 Salt Lake City, UT
- Natalie Jane’s Birthday Party
 Topeka, KS
- Rica’s Marathon
 Victoria, British Columbia
- Team Scott
 Hoboken, NJ
- Don’s Birthday
 Alexandria, VA
- Cornhole for CURE
 Ludington, MI
- Barbara’s Birthday
 Topeka, KS

$1,000–$2,499
- Up to $999
- Rock for CURE
 Evansville, IN
- Running for a CURE
 Washington, DC
- Victoria Marathon
 Victoria, British Columbia
- Lyndsay Kappel Sale 2013
 North Canton, OH
- Gobble Job 5K
 Marietta, GA
2013 Events

<table>
<thead>
<tr>
<th>$200,000 and above</th>
</tr>
</thead>
<tbody>
<tr>
<td>Christopher Donalty Benefit for a CURE</td>
</tr>
<tr>
<td>Utica, NY</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$150,000-$199,999</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kuwait Embassy Dinner 2013</td>
</tr>
<tr>
<td>Washington, DC</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$100,000–$149,999</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drive for CURE 2013</td>
</tr>
<tr>
<td>Wheaton, IL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$75,000–$99,999</th>
</tr>
</thead>
<tbody>
<tr>
<td>San Francisco Benefit</td>
</tr>
<tr>
<td>San Francisco, CA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$25,000–$99,999</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hugh-A-Thon</td>
</tr>
<tr>
<td>Western Springs, IL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$10,000–$24,999</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joey’s Song 2013</td>
</tr>
<tr>
<td>Madison, WI</td>
</tr>
</tbody>
</table>

| Building CURE Globally Worldwide |
| North Shore Century Ride for CURE Chicago, IL |

| Madison Friends of CURE 2013 Madison, WI |
| RE: Epilepsy 2013 Highwood, IL |

<table>
<thead>
<tr>
<th>$5,000–$9,999</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clipper Round the World</td>
</tr>
<tr>
<td>Cape Town, South Africa to Western Australia</td>
</tr>
</tbody>
</table>

| Shutouts for Seizures Madison, WI |
| The Cupid Chase Senoia, GA |

<table>
<thead>
<tr>
<th>$2,500–$4,999</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fencing for a Cause Winnetka, IL</td>
</tr>
</tbody>
</table>

| CURE and the City Santa Monica, CA |
| Kyle’s Run for a Memory 5K Victor, NY |

| Maddie’s Marathon Washington, DC |
| Wrestling for a CURE Salt Lake City, UT |

| Natalie Jane’s Birthday Party Topeka, KS |
| Third Annual Teresa’s Birthday Benefit for CURE San Francisco, CA |

<table>
<thead>
<tr>
<th>$1,000–$2,499</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rica’s Marathon</td>
</tr>
<tr>
<td>Victoria, British Columbia</td>
</tr>
</tbody>
</table>

| Team Scott |
| Hoboken, NJ |

| Don’s Birthday |
| Alexandria, VA |

| Cornhole for CURE |
| Ludington, MI |

| Barbara’s Birthday |
| Topeka, KS |

<table>
<thead>
<tr>
<th>Up to $999</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rock for CURE</td>
</tr>
<tr>
<td>Evansville, IN</td>
</tr>
</tbody>
</table>

| Running for a CURE |
| Washington, DC |

| Victoria Marathon |
| Victoria, British Columbia |

| Lyndsay Kappel Sale 2013 |
| North Canton, OH |

| Gobble Job 5K |
| Marietta, GA |
At almost 37, Cameron Benninghoven had the wisdom of an old soul and the wonder of a young child. He was the picture of good health and fitness—except for the epilepsy that he had been diagnosed with at the age of 16. But that was under control with medicine, and in all of those years he only had a handful of seizures. It was one of those seizures, however, that would take the life of this thriving, good-looking, adventurous and successful young man during the night of November 4, 2009, from a phenomenon known as sudden unexpected death from epilepsy (SUDEP). “When Cameron died, we had never heard of SUDEP,” said his mother, Ellen Benninghoven. “We had never even dreamed Cameron could die from epilepsy.”

“A Cameron is a reminder that we study SUDEP because it has a real human toll. The people and families who suffer SUDEP are not just a statistic.”

Edward Glasscock, PhD, Louisiana State University Health Sciences Center
At almost 37, Cameron Benninghoven had the wisdom of an old soul and the wonder of a young child. He was the picture of good health and fitness—except for the epilepsy that he had been diagnosed with at the age of 16. But that was under control with medicine, and in all of those years he only had a handful of seizures. It was one of those seizures, however, that would take the life of this thriving, good-looking, adventurous and successful young man during the night of November 4, 2009, from a phenomenon known as sudden unexpected death from epilepsy (SUDEP). “When Cameron died, we had never heard of SUDEP,” said his mother, Ellen Benninghoven. “We had never even dreamed Cameron could die from epilepsy.”

“Cameron is a reminder that we study SUDEP because it has a real human toll. The people and families who suffer SUDEP are not just a statistic.”

Edward Glasscock, PhD, Louisiana State University Health Sciences Center
Ellen’s sister immediately looked up SUDEP on the internet and found that every organization in the U.S. that was doing research in the area—CURE. The family asked that in lieu of flowers, donations be sent to CURE in Cameron’s name and a new relationship dedicated to help find a cure for SUDEP was formed. Ellen and her long-time partner, Dr. Michael Schafer, set out to fund a CURE research grant for Edward Glasscock, PhD, at, Louisiana State University Health Sciences Center, entitled, “Pharmacological reversal of cardiorespiratory deficiency in the Kcnq-null model of SUDEP.”

“A few months ago, I asked Ellen if she could send me some pictures of Cameron so I could include the couple honors their son with their work with CURE and making sure they spread awareness about SUDEP.

“Our concern is two-fold,” Michael said. “That meaningful research and awareness about SUDEP are increased.

“Cameron continues to be quite the inspiration. According to his parents, he was as beautiful on the inside as he was on the outside.

“He literally loved everything about life,” said Ellen. “Everybody was just so enamored with him.”

Ellen believes that societal pressures keep her son from going to a doctor regularly and being checked to see if he needed to increase his medication.

“People who have epilepsy have difficulty getting jobs, getting insurance,” she said. “You can’t get a driver’s license if you have had a seizure within 12 months.”

“Our daughter is not the only one who has these problems,” Michael said. “They don’t want to also burden them with the possibility that they could die from it,” Michael said. “We want to reverse that.”

Tributes

Ellen Benninghoven with her son Cameron

Ellen Benninghoven

Ellen Benninghoven

Tony Benjamin

Michael Bembery

Chaim Bell

Buddy Bell

Aaron Becker

Michele Beck

Samuel Bell

Joan & Kirk Bennett

Cameron Benninghoven

Ellen Benninghoven

Jim and Erika Beran

Carol Bergmann

Chance Birkicht

Susan Bailey Black

Drs. Heather & Samantha Black

Linnnea Bloom

Nata Bloom

Halen Boen

Luke Boles

Elizabeth Boone

Johyn Borden

Kimberly Borden

Paul Borden-Smith

Richard Boswell

Mike Bottone

Mary Bowman

Cameron Boyd

Cindy Boyd

Marian Bradly-Kohr

Melissa Brauninger

Bridgett Marie

Braunschiedl

Thomas S. Bridges

Ruth Brunston

Charlotte Brown

George Brooks

Robert Buckley

Ella Bull

Olivia Grace Bullis

Carrie Bums

Debra Cafero & Terrance

Lichtman

Owen Cahillane

Seth Camiornino

Shayn Kamen & Staff

Camp Blue Ridge

Michael & Lori Canter

Mom and Dad Capretto

Martin Carlson

John Carmichael

Jeff & Bobbi Carroll

Christopher Cassell

Karen Castronzi

Robert H. Chadderdon

Leon Chavarria

Adam Chelitz

Ben Chelitz

Mitchell Chelitz

Samuel Chelitz

Eunice Cherry

Howard Chess

Tributes cont.

Jakob Chu

Mark Cochran

Kyle Coggins

Donna Cohen

Brantley Coleman

Chris Coffey

Mike Collins

Miradel Condron

Haley Condon

Mary Ellen & Chris Connelly

Danny Cooke & Cameron Family

Caitlin Corkery

Kaylene Cottapas

Dorothy Faith Cozzens

Heather C. Craig

Callie C. Craig

Catherine Creacenti

Katherine Rose Cretto

Neil Creveling

Patrick Crouse

Elia Claire Cuneen

Chelsea Curlee

Mark Danford Treadwell

Melissa Daughtery

Jason Davidson

Susan Davies

Anne Marie Davino

Meredith Davis

Mary Ellen De Carlo

Justin De La Garza

Ann Deck

Matt Decker

Robert Decker

Dan Delfosse

Katy DeLorenzo

Nicole Demmon

Uday Deo

James Derby

Vincent Denny

Amir Dhadwal

Paula Diamon

Maria & David DiChiara

Sandy Dietz

Denise DiPetta

Ann DiPetta

Sandy Dietz

Mom and Dad Capretto

Martin Carlson

John Carmichael

Jeff & Bobbi Carroll

Christopher Cassell

Karen Castronzi

Robert H. Chadderdon

Leon Chavarria

Adam Chelitz

Ben Chelitz

Mitchell Chelitz

Samuel Chelitz

Eunice Cherry

Howard Chess

Facts about SUDEP

> 1/100 people have a seizure disorder; 1/1000 people with epilepsy die every year of SUDEP.

> People who have uncontrolled seizures are at heightened risk for SUDEP.

> SUDEP takes more lives annually in the United States than Febrile infection related epilepsy syndrome (FRES) and sudden infant death syndrome (SIDS) combined.

> A person with epilepsy has a more than 20 times higher rate of sudden death than does the general population.
Ellen’s sister immediately looked up SUDEP on the internet and found that epilepsy organization in the U.S. that was doing research in the area—CURE. The family asked that in lieu of flowers, donations be sent to CURE in Cameron’s name and a new relationship dedicated to helping find a cure for SUDEP was formed. Ellen and her long-time partner, Dr. Michael Schafer, set out to fund a CURE research grant for Edward Glasscock, PhD, at Louisiana State University Health Sciences Center, entitled, “Pharmacological reversal of cardiorespiratory deficiency in the Kcnq1-null model of SUDEP.”

“A few months ago, I asked Ellen if she could send me some pictures of Cameron so I could include them in presentations and seminars I give on SUDEP,” Michael said. “People who have epilepsy have difficulty keeping their son from going to a doctor regularly and being checked to see if he needed to increase his medication.”

“People who have epilepsy have difficulty getting jobs, getting insurance,” she said. “You can’t get a driver’s license if you have had a seizure within 12 months.”

“The couple honors their son with their work with CURE and making sure they spread awareness about SUDEP.”

“Our concern is two-fold,” Michael said. “That meaningful research and awareness about SUDEP are increased.

“I’m a physician and I didn’t even know about the dangers of SUDEP,” Michael continued. “He lived a perfectly normal life with the occasional seizure.”

Michael said that he believes that many neurologists worry that it is enough of a burden for parents and patients to be told they have epilepsy. They don’t want to also burden them with the possibility that they could die from it,” Michael said. “We want to reverse that.”

Ellen believes that societal pressures keep her son from going to a doctor regularly and being checked to see if he needed to increase his medication.

Ellen Benninghoven with her son Cameron

Tributes

Andy Abplanalp
Teffilo Adame
Melita Aiguere, MD
Angelina Ahrens
Kyle Akera
Rima Al Sabah
Gregory Albert
Hannah Albus
Marian Alexander
Elizabeth Alford
Melissa Jane Allen
Nicholas Alexander
George Allen
The Mother of Dr. David Canter and Family
Greg Anderson
Randy Anderson
Andrea Andrea
Jade Andrews
Duthaler Andy
Kathryn S. Anschutz
Ellie Archer
Daziree Arguelles
Rami & Merri L. Arian
Isabella Armitage
Susan V. Armstrong
Adam Ashley
Lauren Axelrod
Susan & David Axelson
My Buddy Dave from Case Hall Back in the day
Dylan Baird
Adam Baldonado
Nicholas Barber
Emily Barrett
Ryan Barrett
Julie Bashkin
Balarka A. Babatyal
Noam Bauman
Michael Baumgartner
Aline Rose Baustille
Tyler Bazemore
Bryant Bechtold
Aaron Becker
Buddy Bell
Chase Bell
David Bellamy
Michael Bembrey
Tony Benenla
Joan & Kirk Bennett
Cameron Benninghoven
Ellen Benninghoven
Jim and Erika Beran
Carol Bergmann
Chance Birkicht
Susan Bailey Black
Drs. Heather & Samantha Black
Linnia Bloom
Nate Bloom
Halen Boren
Luke Boles
Elizabeth Boone
Johyn Borden
Kimberly Borden
Paul Borden-Smith
Richard Boswell
Mike Bottone
Mary Bowman
Cameron Boyd
Cindy Boyd
Marian Bradly-Kohr
Melissa Brauninger
Bridgette Marie Braunischdorf
Thomas S. Bridges
Ruth Bronston
Charlotte Brown
George Brooks
Robert Buckley
Ella Bull
Olivia Grace Bullis
Carrie Bum
Debra Cafero & Terrance Cafero
Lisabet
Owen Cahillane
Seth Camacino
Shara Kamen & Staff
Camp Blux Ridge
Michael & Lori Cantor
Mom and Dad Capretto
Martin Carlson
John Carmichael
Jeff & Bobbi Carroll
Christopher Cassell
Karon Castrianni
Robert H. Chadderdon
Leon Chavarria
Adam Choi
Ben Chefitz
Mitchell Chefitz
Samuel Chefitz
Eunice Cherry
Howard Chess

Tributes cont.

Jakob Chu
Mark Cochrane
Kyle Coggins
Donna Cohen
Brantley Coleman
Chris Coffey
Mike Collins
Mirabel Condon
Haley Condon
Mary Ellen & Chris Connelly
Danny Cooke Corcoran Family
Caitlin Corkery
Kaylene Cottglaas
Dorothy Faith Cozzensa
Heather C. Craig
Callie R. Craig
Catherine Creasen
Katherine Rose Cresto
Neil Creveling
Patrick Crews
Ella Claire Cunnfan
Chelsea Curcur
Mark Danford Treadwell
Melissa Daughertry
Jason Davidson
Susan Davies
Anne Marie Davino
Meredith Davis
Mary Ellen De Carlo
Justin De La Garza
Ann Deck
Matt Decker
Robert Decker
Dan Delfosse
Katy DeLorenzo
Nicole Dureman
Uday Deo
James Derby
Vincent Deanninis
Amir Dhawwal
Paula Diamond
Ann DeCapite
Marie & David Dichiara
Sandy Dietz
Ann DiPetta
Nico DiPietro
Paul Dizikes
Tracy Dixon-Salazar
Stacey Dodd
Aida Dolen
Peter Dombek
Christopher Donaldy
Frank Donaldy
Siina Doren
Erma E. Duson
Erika Dubreuil
Reagan Duhon
Melyn Durrchlag
Andy Lowell Duthaler
Jennifer Eaton
Linsey Epps
Jason Epstein
George Erickson
Marilyn Evans
Gretchen Evertsham
Samantha Evandt
Ashleigh Fallin
Ballasch
Avril Family
Katie Faulnker
Katy Faye
Rez Feinkhirg
Tony & Josephine Ferrante
Barbara Ferraro
David Fields
Humam Fine
Elaine Fitzh
Timothy B. Fitzgerald
Patricia Fitzsimmons
Jessica Flynn
Eric Folan
Ryan A. Formi
Alexis Forman
The Cemiceone Family
Fosteria Rotary Clu
Sarah Fradkin
Jeanette Waniak Francis
Bonnie Franklin
Andrew Fracassa
Carole Friedman
Sally Friedmann
Robbie Funston
Laura Gabor
Charlie Gallbraith
Paul Gallagher
Paige Gamble
Karan Gamble
Barbara Ganaway
Kara Gehbhart
Mary Genco
Eitan Gevald
Tissie Gilbert
Patrick Gillespie
Patrick Gilmore
Emily Gioia
Zelda Glaser
Emily Gogglen
Elena Golan
Lonny Gold

Facts about SUDEP

> 1/100 people have a seizure disorder; 1/1000 people with epilepsy die every year of SUDEP.

> People who have uncontrolled seizures are at heightened risk for SUDEP.

> SUDEP takes more lives annually in the United States than Febrile infection related epilepsy syndrome (FRES) and sudden infant death syndrome (SIDS) combined.

> A person with epilepsy has a more than 20 times higher rate of sudden death than does the general population.
While playing at his aunt’s house, a then 10-year-old Rick Jasculca witnessed an event that still haunts his memory today and was one of three pivotal life moments that set him on a path to help find a cure for epilepsy. The now Chairman & CEO of Jasculca Terman Strategic Communications, a firm headquartered in Chicago, was playing with his cousin Joan, who was also 10, when she fell to the ground and had a seizure in front of him. He didn’t know she had epilepsy—or even what epilepsy was. “I was petrified,” Rick said. “Back then people didn’t talk about (epilepsy). After I witnessed it my parents sat me down and talked about it with me.”

“But with epilepsy, here’s a disease we can do something about. We have the opportunity to find a cure and we can so profoundly make a difference in so many lives.”

Rick Jasculca
While playing at his aunt’s house, a then 10-year-old Rick Jasculca witnessed an event that still haunts his memory today and was one of three pivotal life moments that set him on a path to help find a cure for epilepsy. The now Chairman & CEO of Jasculca Terman Strategic Communications, a firm headquartered in Chicago, was playing with his cousin Joan, who was also 10, when she fell to the ground and had a seizure in front of him. He didn’t know she had epilepsy—or even what epilepsy was. “I was petrified,” Rick said. “Back then people didn’t talk about (epilepsy). After I witnessed it my parents sat me down and talked about it with me.”

“But with epilepsy, here’s a disease we can do something about. We have the opportunity to find a cure and we can so profoundly make a difference in so many lives.”

Rick Jasculca
In a very special moment for Rick, last year, his daughter Lauren, who is now V.P. of Operations and Special Projects for Jasculca Terman, served as the stage manager for CURE’s annual event, which again featured Hillary Clinton as guest speaker, with a guest appearance by Lauren Axelrod.

“Many of us feel we have no choice but to embrace this cause, but Rick is a person whose heart is so big that he has embraced it wholeheartedly and as passionately as if it touched his immediate family personally,” Susan said. “He is so very special and we wish we had more of him!”

The third personal tie that convinced Rick he could make a difference if he committed his time and money to CURE, was watching his wife’s brother Tom overcome polio.

“They found a cure for polio, so I said, ‘We can come up with a cure for epilepsy,’” Rick said.

“I believe as a society we have an obligation to do that.”

Over the years, Jasculca Terman has provided CURE with services ranging from event planning—planning CURE’s annual events—to newsletter and annual report production. They have provided PR assistance and in the infancy of the organization, were there to open doors and make introductions.

“We have been on the scene for over three decades so we have a lot of important relationships,” he said. “We do what we can and what is necessary. We want everyone to feel that they are part of a team.”

When asked why his firm gives so much to one organization, Rick, who has served terms in both the Carter and Clinton administrations, said that the answer lies in a lesson he learned while working with the Carter Center. “At the Carter Center, they focus on democracy, human rights and health care, but they focus on very specific pieces,” he explained. “In health care, they haven’t focused on the big sexy pieces. They focus on things like river blindness and guinea worm in Africa and they have completely eradicated guinea worm. So I have seen if you have a focus and a discipline you can conquer it.”

Rick said that while he and his family have been personally touched by cancer—most closely by the death of his wife Judy—he has chosen epilepsy as the disease that he wants to conquer.

“Epilepsy doesn’t have the ballyhoo of a lot of other diseases,” he said. “Over the course of a year I write a lot of checks to charities. But with epilepsy, here’s a disease that we can do something about. If we stick with it, we have the opportunity to find a cure and we can so profoundly make a difference in so many lives.”
So many years later, when a good friend, Susan Axelrod, approached Rick about helping out on her first annual event for her newly formed organization to provide funding for epilepsy, Rick said he was all in. He and his partner Jim Terman and the rest of the team at Jasculca Terman—which now includes two of Rick’s children who are V.P.’s at the firm—have been providing an abundance of in-kind donations ever since.

“They have been there from the very, very beginning and bring their whole team to every project that he works on for us,” said CURE Founding Chair Susan Axelrod. “Neither Rick nor Jim has ever said no to any request—no matter how big or small—and still to this day do anything we ask of them.”

The year of the first annual event, in January 1999, the guest speaker was then First Lady Hillary Rodham Clinton. As fortune would have it, Rick was also serving as the White House advance lead, so he was in charge of the First Lady’s schedule. The event was a tremendous success.

It was another personal tie, however, that would really bind Rick and his wife Judy—who sadly passed away of ovarian cancer in 2010—to the cause and convince them to continue to help the organization throughout the years. The Jasculcas have four children: Aimee, 41; Christopher, 39; Andrew, 35; and Lauren, 33. Lauren Jasculca Foley, the youngest, is about the same age as Lauren Axelrod, the daughter of Susan and David Axelrod, who has epilepsy.

“I saw them grow up on very different paths,” Rick said. “I will never forget a meeting Susan and I were both at when I told the person we were meeting with that Susan and I both had Laurens who were the same age and both full of potential. As I was telling the story both Susan and I broke down.”

In a very special moment for Rick, last year, his daughter Lauren, who is now V.P. of Operations and Special Projects for Jasculca Terman, served as the stage manager for CURE’s annual event, which again featured Hillary Clinton as guest speaker, with a guest appearance by Lauren Axelrod.

“Many of us feel we have no choice but to embrace this cause, but Rick is a person whose heart is so big that he has embraced it whole-heartedly and as passionately as if it touched his immediate family personally,” Susan said. “He is so very special and we wish we had more of him!”

The third personal tie that convinced Rick he could make a difference if he committed his time and money to CURE, was watching his wife’s brother Tom overcome polio.

“They found a cure for polio, so I said, ‘We can come up with a cure for epilepsy,’” Rick said. “I believe as a society we have an obligation to do that.”

Over the years, Jasculca Terman has provided CURE with services ranging from event planning—planning CURE’s annual events—to newsletter and annual report production. They have provided PR assistance and in the infancy of the organization, were there to open doors and make introductions.

“We have been on the scene for over three decades so we have a lot of important relationships,” he said. “We do what we can and what is necessary. We want everyone to feel that they are part of a team.”

When asked why his firm gives so much to one organization, Rick, who has served terms in both the Carter and Clinton administrations, said that the answer lies in a lesson he learned while working with the Carter Center. “At the Carter Center, they focus on democracy, human rights and health care, but they focus on very specific pieces,” he explained. “In health care, they haven’t focused on the big sexy pieces. They focus on things like river blindness and guinea worm in Africa and they have completely eradicated guinea worm. So I have seen if you have a focus and a discipline you can conquer it.”

Rick said that while he and his family have been personally touched by cancer—most closely by the death of his wife Judy—he has chosen epilepsy as the disease that he wants to conquer.

“Epilepsy doesn’t have the ballyhoo of a lot of other diseases,” he said. “Over the course of a year I write a lot of checks to charities. But with epilepsy, here’s a disease that we can do something about. If we stick with it, we have the opportunity to find a cure and we can so profoundly make a difference in so many lives.”

In-Kind Kindness

AKPD Message & Media
ASGK Public Strategies
Bruce Bever Photography
Benenson Strategy Group
Deutsch, Inc.
Earhole Studios
Eli’s Cheesecake
Mike Fierros
Filmgear
Jasculca Terman Strategic Communications
Judy & Scott Leisher
Mesrobian Financial
Ricardo Mondragon
Cynni Moran
Michelle Norkett
Brian Noyes
Jorge Reyes Ortiz
PRG
Sidley Austin LLP
John Sircher
Alan Thatcher
Tiffany & Co.
Walter Payton Jazz Orchestra
Zacuto
Howard Zwirn
Although Joel S. Marcus has no personal ties to epilepsy, he is passionate about helping to find a cure for the disease. As one of the newest members of the board of directors of CURE, Joel brings the leadership and international business experience that he has gained as Chairman, Chief Executive Officer and Founder of Alexandria Real Estate Equities, Inc. “Epilepsy is an underfunded and underserved set of diseases,” Joel said. “It is one of the most unappreciated areas of neuroscience.”

Joel believes that his experience will help CURE operate as a world-class business. CURE has been named a “Four Star Charity” by Charity Navigator—America’s largest and most trusted independent charity evaluator.

“You need to have great management, you need a financial and business strategy, and to really go after it,” he said.

Originally of Denver, Colorado, Joel founded Alexandria Real Estate Equities, Inc., the largest and leading REIT uniquely focused on collaborative and innovative science and technology campuses in urban innovation clusters, in 1994, and co-founded Alexandria Venture Investments in 1996, and the annual Alexandria Summit™ in 2011.

Joel was first introduced to CURE when he met David Axelrod, the husband of CURE Founding Chair Susan Axelrod, at a Citigroup CEO dinner.

“I’m a Republican and he’s obviously a Democrat,” Joel said. “We had a good debate. I told him I was disappointed with the administration’s work in the research and development industry.”

A friendship developed. Joel said he was impressed with Susan’s personal passion towards finding a cure for epilepsy and David’s ability to bring the message to the people. In 2013, he invited both Susan and David to serve as panelists at the Medical Research Philanthropy Alexandria Summit, an annual gathering of scientific thought leaders, from healthcare, technology, finance, academia, government, non-profit, and reimbursement exchange insights, debate critical issues, and develop strategic, actionable outcomes to address the most critical healthcare issues facing society.

Moved by the Axelrods’ panels, Joel said he found their determination to cure epilepsy absolutely inspirational. CURE represents everything he stands for, what he has built a career and business upon—a belief in science. The combination of his convictions and newfound friendships have led him to make his first personal donation to the research organization he would become a board member of six months later.

“CURE funds paramount science and deserves to be viewed as the predominant research organization that it is. I hope to bring some business acumen from my years in the industry to help continue expanding this extraordinary research program.”
Although Joel S. Marcus has no personal ties to epilepsy, he is passionate about helping to find a cure for the disease. As one of the newest members of the board of directors of CURE, Joel brings the leadership and international business experience that he has gained as Chairman, Chief Executive Officer and Founder of Alexandria Real Estate Equities, Inc. “Epilepsy is an underfunded and underserved set of diseases,” Joel said. “It is one of the most unappreciated areas of neuroscience.”

Joel believes that his experience will help CURE operate as a world-class business. CURE has been named a “Four Star Charity” by Charity Navigator—America’s largest and most trusted independent charity evaluator.

“You need to have great management, you need a financial and business strategy, and to really go after it,” he said.

Originally of Denver, Colorado, Joel founded Alexandria Real Estate Equities, Inc., the largest and leading REIT uniquely focused on collaborative and innovative science and technology campuses in urban innovation clusters, in 1994, and co-founded Alexandria Venture Investments in 1996, and the annual Alexandria Summit™ in 2011.

Joel was first introduced to CURE when he met David Axelrod, the husband of CURE Founding Chair Susan Axelrod, at a Citigroup CEO dinner.

“I’m a Republican and he’s obviously a Democrat,” Joel said. “We had a good debate. I told him I was disappointed with the administration’s work in the research and development industry.”

A friendship developed. Joel said he was impressed with Susan’s personal passion towards finding a cure for epilepsy and David’s ability to bring the message to the people. In 2013, he invited both Susan and David to serve as panelists at the Medical Research Philanthropy Alexandria Summit, an annual gathering of scientific thought leaders, from healthcare, technology, finance, academia, government, non-profit, and reimbursement exchange insights, debate critical issues, and develop strategic, actionable outcomes to address the most critical healthcare issues facing society.

Moved by the Axelrods’ panels, Joel said he found their determination to cure epilepsy absolutely inspirational. CURE represents everything he stands for, what he has built a career and business upon—a belief in science. The combination of his convictions and newfound friendships have led him to make his first personal donation to the research organization he would become a board member of six months later.

“CURE funds paramount science and deserves to be viewed as the predominant research organization that it is. I hope to bring some business acumen to help continue expanding this extraordinary research program.”
Research Organizations Supported by CURE Around the World

CURE is proud to have supported researchers at the following esteemed institutions over the years.

Albert Einstein College of Medicine, NY
Ann & Robert H. Lurie Children’s Hospital of Chicago, IL
Barrow Neurological Institute, AZ
Baylor College of Medicine, TX
Ben-Gurion University of the Negev, Israel
Bogomoletz Institute of Physiology, Ukraine
Boston College, MA
Boston University, MA
Brandeis University, MA
Brigham and Women’s Hospital, MA
British Columbia Children’s Hospital, Canada
Case Western Reserve University, OH
Children’s Hospital Colorado, CO
Children’s Hospital, Boston, MA
Children’s Memorial Hospital, IL
Children’s National Medical Center, Wash DC
Colombia University, NY
Cornell University, NY
Creighton University, NE
Dana-Farber Cancer Institute, MA
Dartmouth College, NH
Drexel University, PA
Duke University, NC
Emory University, GA
Epilepsy Bereaved, UK
Georgia Washington University, Wash DC
Great Ormond Street Hospital for Children, UK
Greater Los Angeles VA Medical Center, CA
Grenoble Institute of Neuroscience, France
Harvard Medical School, MA
Harvard University, MA
Helen Hayes Hospital, NY
Hospital for Sick Children, Canada
Indiana University, IN
INSERM, France
Johns Hopkins University, MD
Karolinska Institutet, Sweden
Legacy Emanuel Medical Center, OR
Lehigh University, PA
Leiden University Medical Center, Netherlands
Ludwig Maximilians University, Germany
Mario Negri Institute, Italy
Massachusetts General Hospital, MA
Max Planck Institute, FL
Mayo Clinic, MN
McGill University, Canada
NeurAccel Biosciences, CA
New Jersey Medical School, NJ
New York Medical College, NY
New York University, NY
Northwestern University, IL
Pennsylvania State University, PA
Polytechnic Institute of New York University, NY
Purdue University, IN
Rush University, IL
Rutgers University, NJ
Sapienza University of Rome, Italy
Southern Illinois University, IL
Stanford University, CA
Temple University, PA
Texas Tech University, TX
The Hebrew University of Jerusalem, Israel
The Jackson Laboratory, ME
The Nathan Kline Institute, NY
Toronto Western Research Institute, Canada
Tulane University, MA
University College London, UK
University Hospital of Wurzburg, Germany
University of Alabama at Birmingham, AL

CURE has awarded more than 160 cutting-edge projects in 13 countries around the world to date.

University of British Columbia, Canada
University of California, Berkeley, CA
University of California, Davis, CA
University of California, Los Angeles, CA
University of California, San Francisco, CA
University of Colorado, Denver, CO
University of Connecticut, CT
University of Florida, FL
University of Illinois Urbana Champaign, IL
University of Kuopio, Finland
University of Maryland, MD
University of Melbourne, Australia
University of Michigan, MI
University of Minnesota, MN
University of Montana, MT
University of Montreal, Canada
University of Nice-Sophia Antipolis, France
University of North Carolina - Chapel Hill, NC
University of Pennsylvania, PA
University of Rochester, NY
University of Southern California, CA
University of Sydney, Australia
University of Texas Southwestern, TX
University of Toronto, Canada
University of Turku, Finland
University of Utah, UT
University of Veterinary Medicine, Germany
University of Virgina, VA
University of Washington, WA
University of Wisconsin, Madison
Upssala University, Sweden
Vanderbilt University, TN
Wake Forest University, NC
Washington University, MO
Well Medical College of Cornell University, NY
Weizmann Institute of Science, Israel
Wesleyan University, CT
Yale University, CT
Research Organizations Supported by CURE Around the World

CURE is proud to have supported researchers at the following esteemed institutions over the years.

Albert Einstein College of Medicine, NY
Ann & Robert H. Lurie Children’s Hospital of Chicago, IL
Barrow Neurological Institute, AZ
Baylor College of Medicine, TX
Ben-Gurion University of the Negev, Israel
Bogomoletz Institute of Physiology, Ukraine
Boston College, MA
Boston University, MA
Brandeis University, MA
Brigham and Women’s Hospital, MA
British Columbia Children’s Hospital, Canada
Case Western Reserve University, OH
Children’s Hospital Colorado, CO
Children’s Hospital, Boston, MA
Children’s Memorial Hospital, IL
Children’s Hospital of Philadelphia, PA
Children’s Hospital, St. Louis, MO
Children’s National Medical Center, Wash DC
CHU-Sainte-Justine, Canada
Cincinnati Children’s Hospital, OH
Cleveland Clinic, OH
Colombia University, NY
Cornell University, NY
Creighton University, NE
Dana-Farber Cancer Institute, MA
Dartmouth College, NH
Drexel University, PA
Duke University, NC
Emory University, GA
Epilepsy Bereaved, UK
George Washington University, Wash DC
Great Ormond Street Hospital for Children, UK
Greater Los Angeles VA Medical Center, CA
Grenoble Institute of Neuroscience, France
Harvard Medical School, MA
Harvard University, MA
Helen Hayes Hospital, NY
Hospital for Sick Children, Canada
Indiana University, IN
INSERM, France
Johns Hopkins University, MD
Karolinska Institutet, Sweden
Legacy Emanuel Medical Center, OR
Lehigh University, PA
Leiden University Medical Center, Netherlands
Louisiana State University, LA
Ludwig Maximilians University, Germany
Mario Negri Institute, Italy
Massachusetts General Hospital, MA
Max Planck Institute, FL
Mayo Clinic, MN
McGill University, Canada
NeurAcel Biosciences, CA
New Jersey Medical School, NJ
New York Medical College, NY
New York University, NY
Northwestern University, IL
Pennsylvania State University, PA
Polytechnic Institute of New York University, NY
Purdue University, IN
Rush University, IL
Rutgers University, NJ
Sapienza University of Rome, Italy
Southern Illinois University, IL
Stanford University, CA
Temple University, PA
Texas Tech University, TX
The Hebrew University of Jerusalem, Israel
The Jackson Laboratory, ME
The Nathan Kline Institute, NY
Toronto Western Research Institute, Canada
Tufts University, MA
University College London, UK
University Hospital of Wurzburg, Germany
University of Alabama at Birmingham, AL
University of British Columbia, Canada
University of California, Berkeley, CA
University of California, Davis, CA
University of California, Los Angeles, CA
University of California, San Francisco, CA
University of Colorado, Denver, CO
University of Connecticut, CT
University of Florida, FL
University of Illinois Urbana Champaign, IL
University of Kuopio, Finland
University of Maryland, MD
University of Melbourne, Australia
University of Michigan, MI
University of Minnesota, MN
University of Montana, MT
University of Montreal, Canada
University of Nice-Sophia Antipolis, France
University of North Carolina - Chapel Hill, NC
University of Pennsylvania, PA
University of Rochester, NY
University of Southern California, CA
University of Sydney, Australia
University of Texas, Southwestern, TX
University of Toronto, Canada
University of Turku, Finland
University of Utah, UT
University of Veterinary Medicine, Germany
University of Virginia, VA
University of Washington, WA
University of Wisconsin, Madison
Uppsala University, Sweden
Vanderbilt University, TN
Wake Forest University, NC
Washington University, MO
Weill Medical College of Cornell University, NY
Weizmann Institute of Science, Israel
Wesleyan University, CT
Yale University, CT
Statements of Financial Position

Years ended December 31, 2013, 2012

<table>
<thead>
<tr>
<th>2013</th>
<th>Unrestricted</th>
<th>Temporarily Restricted</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cash and cash equivalents</td>
<td>$2,930,436</td>
<td>—</td>
<td>$2,930,436</td>
</tr>
<tr>
<td>Investments</td>
<td>6,853,344</td>
<td>—</td>
<td>6,853,344</td>
</tr>
<tr>
<td>Grants and accounts receivable</td>
<td>279,039</td>
<td>250,000</td>
<td>529,039</td>
</tr>
<tr>
<td>Prepaid expenses and other assets</td>
<td>78,673</td>
<td>—</td>
<td>78,673</td>
</tr>
<tr>
<td>Fixed assets, at cost less accumulated depreciation of $18,327 in 2013 and $12,257 in 2012</td>
<td>25,616</td>
<td>—</td>
<td>25,616</td>
</tr>
<tr>
<td>Total Assets</td>
<td>$10,167,108</td>
<td>$250,000</td>
<td>$10,417,108</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2012</th>
<th>Unrestricted</th>
<th>Temporarily Restricted</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cash and cash equivalents</td>
<td>$4,888,350</td>
<td>$330,000</td>
<td>$5,218,350</td>
</tr>
<tr>
<td>Investments</td>
<td>5,612,360</td>
<td>—</td>
<td>5,612,360</td>
</tr>
<tr>
<td>Grants and accounts receivable</td>
<td>220,880</td>
<td>166,666</td>
<td>387,546</td>
</tr>
<tr>
<td>Prepaid expenses and other assets</td>
<td>47,147</td>
<td>—</td>
<td>47,147</td>
</tr>
<tr>
<td>Fixed assets, at cost less accumulated depreciation</td>
<td>23,188</td>
<td>—</td>
<td>23,188</td>
</tr>
<tr>
<td>Total Assets</td>
<td>$10,791,925</td>
<td>$316,666</td>
<td>$11,108,591</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2013</th>
<th>Unrestricted</th>
<th>Temporarily Restricted</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liabilities and Net Assets</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accounts payable and accrued expenses</td>
<td>$74,605</td>
<td>—</td>
<td>$74,605</td>
</tr>
<tr>
<td>Grants payable</td>
<td>1,933,495</td>
<td>—</td>
<td>1,933,495</td>
</tr>
<tr>
<td>Total Liabilities</td>
<td>2,028,100</td>
<td>—</td>
<td>2,028,100</td>
</tr>
<tr>
<td>Net Assets</td>
<td>$8,139,008</td>
<td>$250,000</td>
<td>$8,389,008</td>
</tr>
<tr>
<td>Total Liabilities and Net Assets</td>
<td>$10,167,108</td>
<td>$250,000</td>
<td>$10,417,108</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2012</th>
<th>Unrestricted</th>
<th>Temporarily Restricted</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liabilities and Net Assets</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accounts payable and accrued expenses</td>
<td>$102,467</td>
<td>—</td>
<td>$102,467</td>
</tr>
<tr>
<td>Grants payable</td>
<td>3,016,042</td>
<td>—</td>
<td>3,016,042</td>
</tr>
<tr>
<td>Total Liabilities</td>
<td>3,118,509</td>
<td>—</td>
<td>3,118,509</td>
</tr>
<tr>
<td>Net Assets</td>
<td>$7,673,416</td>
<td>$316,666</td>
<td>$8,190,082</td>
</tr>
<tr>
<td>Total Liabilities and Net Assets</td>
<td>$10,791,925</td>
<td>$316,666</td>
<td>$11,108,591</td>
</tr>
</tbody>
</table>

Statements of Activities and Changes in Net Assets

Years ended December 31, 2013, 2012

<table>
<thead>
<tr>
<th>2013</th>
<th>Unrestricted</th>
<th>Temporarily Restricted</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Support and revenue</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contributions</td>
<td>$1,547,165</td>
<td>$250,000</td>
<td>$1,797,165</td>
</tr>
<tr>
<td>Net special events</td>
<td>2,501,136</td>
<td>—</td>
<td>2,501,136</td>
</tr>
<tr>
<td>Investment income</td>
<td>186,840</td>
<td>—</td>
<td>186,840</td>
</tr>
<tr>
<td>Other</td>
<td>5,293</td>
<td>—</td>
<td>5,293</td>
</tr>
<tr>
<td>Net assets released from restriction</td>
<td>516,666</td>
<td>(516,666)</td>
<td>—</td>
</tr>
<tr>
<td>Total support and revenue</td>
<td>4,757,100</td>
<td>(266,666)</td>
<td>4,490,434</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2012</th>
<th>Unrestricted</th>
<th>Temporarily Restricted</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expenses</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Program services</td>
<td>3,857,121</td>
<td>—</td>
<td>3,857,121</td>
</tr>
<tr>
<td>General administration</td>
<td>224,933</td>
<td>—</td>
<td>224,933</td>
</tr>
<tr>
<td>Fundraising</td>
<td>308,309</td>
<td>—</td>
<td>308,309</td>
</tr>
<tr>
<td>Total expenses</td>
<td>4,390,023</td>
<td>—</td>
<td>4,390,023</td>
</tr>
<tr>
<td>Increase in net assets from operations</td>
<td>367,077</td>
<td>(266,666)</td>
<td>100,411</td>
</tr>
<tr>
<td>Change in fair value of investments</td>
<td>98,515</td>
<td>—</td>
<td>98,515</td>
</tr>
<tr>
<td>Change in net assets</td>
<td>465,592</td>
<td>(266,666)</td>
<td>199,297</td>
</tr>
<tr>
<td>Net assets, beginning of year</td>
<td>7,673,416</td>
<td>$316,666</td>
<td>8,190,082</td>
</tr>
<tr>
<td>Net assets, end of year</td>
<td>$8,139,008</td>
<td>$250,000</td>
<td>$8,389,008</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2012</th>
<th>Unrestricted</th>
<th>Temporarily Restricted</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expenses</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Program services</td>
<td>1,819,960</td>
<td>—</td>
<td>1,819,960</td>
</tr>
<tr>
<td>General administration</td>
<td>179,909</td>
<td>—</td>
<td>179,909</td>
</tr>
<tr>
<td>Fundraising</td>
<td>304,291</td>
<td>—</td>
<td>304,291</td>
</tr>
<tr>
<td>Total expenses</td>
<td>4,674,160</td>
<td>—</td>
<td>4,674,160</td>
</tr>
<tr>
<td>Increase in net assets from operations</td>
<td>1,187,333</td>
<td>(616,667)</td>
<td>570,667</td>
</tr>
<tr>
<td>Change in fair value of investments</td>
<td>313,669</td>
<td>—</td>
<td>313,669</td>
</tr>
<tr>
<td>Change in net assets</td>
<td>1,501,002</td>
<td>(616,667)</td>
<td>884,335</td>
</tr>
<tr>
<td>Net assets, beginning of year</td>
<td>7,673,416</td>
<td>$316,666</td>
<td>8,190,082</td>
</tr>
<tr>
<td>Net assets, end of year</td>
<td>$8,139,008</td>
<td>$250,000</td>
<td>$8,389,008</td>
</tr>
</tbody>
</table>

Efficiency of Expenditures

- Fundraising: 7%
- Administration: 5%
- Program: 88%
Statements of Financial Position

Years ended December 31, 2013, 2012

<table>
<thead>
<tr>
<th></th>
<th>2013</th>
<th>2012</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unrestricted</td>
<td>Temporarily</td>
</tr>
<tr>
<td>Assets</td>
<td></td>
<td>Restricted</td>
</tr>
<tr>
<td>Cash and cash equivalents</td>
<td>$ 2,930,436</td>
<td>$ —</td>
</tr>
<tr>
<td>Investments</td>
<td>6,853,344</td>
<td>—</td>
</tr>
<tr>
<td>Grants and accounts receivable</td>
<td>279,039</td>
<td>250,000</td>
</tr>
<tr>
<td>Prepaid expenses and other assets</td>
<td>78,673</td>
<td>—</td>
</tr>
<tr>
<td>Fixed assets, at cost less accumulated depreciation</td>
<td>25,616</td>
<td>—</td>
</tr>
<tr>
<td>Total Assets</td>
<td>$ 10,167,108</td>
<td>$ 250,000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>2013</th>
<th>2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liabilities and Net Assets</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accounts payable and accrued expenses</td>
<td>$ 74,605</td>
<td>—</td>
</tr>
<tr>
<td>Grants payable</td>
<td>1,953,495</td>
<td>—</td>
</tr>
<tr>
<td>Total Liabilities</td>
<td>2,028,100</td>
<td>—</td>
</tr>
<tr>
<td>Net Assets</td>
<td>8,139,008</td>
<td>250,000</td>
</tr>
<tr>
<td>Total Liabilities and Net Assets</td>
<td>$ 10,167,108</td>
<td>$ 250,000</td>
</tr>
</tbody>
</table>

Statements of Activities and Changes in Net Assets

Years ended December 31, 2013, 2012

<table>
<thead>
<tr>
<th></th>
<th>2013</th>
<th>2012</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unrestricted</td>
<td>Temporarily</td>
</tr>
<tr>
<td>Support and revenue</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contributions</td>
<td>$1,547,165</td>
<td>$250,000</td>
</tr>
<tr>
<td>Investment income</td>
<td>186,840</td>
<td>—</td>
</tr>
<tr>
<td>Other</td>
<td>5,293</td>
<td>—</td>
</tr>
<tr>
<td>Net assets released from restriction</td>
<td>516,666</td>
<td>(516,667)</td>
</tr>
<tr>
<td>Total support and revenue</td>
<td>4,757,100</td>
<td>(266,666)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>2013</th>
<th>2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expenses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Program services</td>
<td>3,857,121</td>
<td>—</td>
</tr>
<tr>
<td>General administration</td>
<td>224,993</td>
<td>—</td>
</tr>
<tr>
<td>Fundraising</td>
<td>308,309</td>
<td>—</td>
</tr>
<tr>
<td>Total expenses</td>
<td>4,390,023</td>
<td>—</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>2013</th>
<th>2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increase in net assets from operations</td>
<td>367,077</td>
<td>(266,666)</td>
</tr>
<tr>
<td>Change in fair value of investments</td>
<td>98,515</td>
<td>—</td>
</tr>
<tr>
<td>Change in net assets</td>
<td>465,592</td>
<td>(266,666)</td>
</tr>
<tr>
<td>Net assets, beginning of year</td>
<td>7,673,416</td>
<td>516,666</td>
</tr>
<tr>
<td>Net assets, end of year</td>
<td>$ 8,139,008</td>
<td>$ 250,000</td>
</tr>
</tbody>
</table>

Efficiency of Expenditures

- Fundraising 7%
- Administration 5%
- Program 88%
Every grant submitted to CURE goes through a rigorous scientific review process. Each application is evaluated on the basis of scientific merit, relevance to CURE’s mission, innovation, feasibility, and likelihood to be transformative. CURE seeks to identify research aimed at curing epilepsy and lay reviewers bring a key perspective and sense of urgency to the CURE grant review process. The end result is that CURE funds the best possible science and funds researchers at all levels in their careers and from many different arenas. The CURE Lay Review Council (LRC) consists of people with epilepsy, or the loved ones of people with epilepsy, who have a special interest in understanding epilepsy research. Members of the LRC participate in CURE’s grant review process and read research proposals from a lay perspective so that the stakeholder point of view is critically represented at all stages. Lay review is one of the most important aspects of CURE’s unique grant review pipeline. By involving individuals who are personally affected by epilepsy in grant review, CURE keeps the patient at the heart of all the research it funds.

“Receiving a highly competitive CURE award is a formidable gauge of what our colleagues think of the significance and direction of our research. In the lab, CURE funding has allowed us to expand our efforts and explore novel and exciting research avenues.”
Dr. Timothy Simeone, grantee, 2013

“This grant award means a lot to me. It enables us to do work for patients and families, which is very personal and is a highly motivating force for myself and my team to give the very best.”
Dr. Detlev Boison, grantee, 2008 and 2013

“I get to witness the uncovering and discovery of new knowledge, totally unseen to any other human in the history of mankind, everyday.”
Dr. Avtar Roopra, grantee, 2013

“The CURE funding has enhanced my outreach and teachings efforts.”
Dr. Janice Naegele, grantee, 2013
Finding and Funding Cutting-Edge Research

Every grant submitted to CURE goes through a rigorous scientific review process. Each application is evaluated on the basis of scientific merit, relevance to CURE’s mission, innovation, feasibility, and likelihood to be transformative. CURE seeks to identify research aimed at curing epilepsy and lay reviewers bring a key perspective and sense of urgency to the CURE grant review process. The end result is that CURE funds the best possible science and funds researchers at all levels in their careers and from many different arenas. The CURE Lay Review Council (LRC) consists of people with epilepsy, or the loved ones of people with epilepsy, who have a special interest in understanding epilepsy research. Members of the LRC participate in CURE’s grant review process and read research proposals from a lay perspective so that the stakeholder point of view is critically represented at all stages. Lay review is one of the most important aspects of CURE’s unique grant review pipeline. By involving individuals who are personally affected by epilepsy in grant review, CURE keeps the patient at the heart of all the research it funds.

Grant Review Process

“Receiving a highly competitive CURE award is a formidable gauge of what our colleagues think of the significance and direction of our research. In the lab, CURE funding has allowed us to expand our efforts and explore novel and exciting research avenues.”
Dr. Timothy Simeone, grantee, 2013

“RECEIVING A HIGHLY COMPETITIVE CURE AWARD IS A FORMIDABLE GAUGE OF WHAT OUR COLLEAGUES THINK OF THE SIGNIFICANCE AND DIRECTION OF OUR RESEARCH. IN THE LAB, CURE FUNDING HAS ALLOWED US TO EXPAND OUR EFFORTS AND EXPLORE NOVEL AND EXCITING RESEARCH AVENUES.”
DR. TIMOTHY SIMEONE, GRANTEE, 2013

This grant award means a lot to me. It enables us to do work for patients and families, which is very personal and is a highly motivating force for myself and my team to give the very best.”
Dr. Detlev Boison, grantee, 2008 and 2013

“The CURE funding has enhanced my outreach and teachings efforts.”
Dr. Janice Naegele, grantee, 2013

“I get to witness the uncovering and discovery of new knowledge, totally unseen to any other human in the history of mankind, everyday.”
Dr. Avtar Roopra, grantee, 2013

“Receiving a highly competitive CURE award is a formidable gauge of what our colleagues think of the significance and direction of our research. In the lab, CURE funding has allowed us to expand our efforts and explore novel and exciting research avenues.”
Dr. Timothy Simeone, grantee, 2013

“RECEIVING A HIGHLY COMPETITIVE CURE AWARD IS A FORMIDABLE GAUGE OF WHAT OUR COLLEAGUES THINK OF THE SIGNIFICANCE AND DIRECTION OF OUR RESEARCH. IN THE LAB, CURE FUNDING HAS ALLOWED US TO EXPAND OUR EFFORTS AND EXPLORE NOVEL AND EXCITING RESEARCH AVENUES.”
DR. TIMOTHY SIMEONE, GRANTEE, 2013

This grant award means a lot to me. It enables us to do work for patients and families, which is very personal and is a highly motivating force for myself and my team to give the very best.”
Dr. Detlev Boison, grantee, 2008 and 2013

“The CURE funding has enhanced my outreach and teachings efforts.”
Dr. Janice Naegele, grantee, 2013

“I get to witness the uncovering and discovery of new knowledge, totally unseen to any other human in the history of mankind, everyday.”
Dr. Avtar Roopra, grantee, 2013
Challenge Awards

Multiple-year grants (2-3 years), with a maximum of $250,000, for established or early career investigators exploring cutting-edge approaches to curing epilepsy

JULIE’S HOPE AWARD

John Huguenard, PhD and Jeanne Paz, PhD
Stanford University

“Closed-loop control of injury-induced and genetic seizures using temporally precise cell-type-specific optogenetic manipulation”

This work expands an exciting approach that delivers light to the brain to control the activity of specific cell types. Shining light on certain cells can specifically block seizures without affecting normal brain activities. The researchers plan to develop novel tools to determine causal links between the activity of specific cell types and what seizure types they regulate.

Janice Naegele, PhD
Wesleyan University

“GABAergic Interneuron Transplantation for Circuit Repair and Seizure Suppression in Temporal Lobe Epilepsy”

Investigations in mice with acquired temporal lobe epilepsy will examine whether transplants of a major inhibitory cell in the brain can suppress seizures by repairing dysfunctional neural circuits. Following transplantation, the researchers will study whether the transplanted cells suppress spontaneous seizures.

Prevention of Acquired Epilepsies Awards

Multiple-year grants (up to 3 years) to a maximum of $250,000 in support of research relevant to the prevention and treatment of acquired (post-insult) epilepsies

BRIGHTER FUTURE AWARD

Detlev Boison, PhD
Legacy Emanuel Hospital and Health Center

“Prevention of Acquired Epilepsy Through an Epigenetic Intervention”

New findings suggest that chemical changes introduced into the DNA of brain cells play a fundamental role in supporting those processes that lead to the development of epilepsy. This grant is based on the discovery that adenosine, a natural anticonvulsant in the brain, reduces these chemical changes to DNA, and thereby has the potential to reverse DNA modifications in the epileptic brain. Dr. Boison seeks to establish a new treatment paradigm to make therapeutic use of a transient dose of adenosine with the goal to prevent the development of epilepsy long-term.

Shelley Russek, PhD & Amy Brooks-Kayal, MD
Boston University & University of Colorado Denver School of Medicine

“Development of Novel JAK/STAT Inhibitors for Disease Modification in Epilepsy”

Dr. Russek and Dr. Brooks-Kayal have found that an important cellular signaling pathway is activated after brain injuries that lead to epilepsy, and that inhibiting this activation reduces subsequent seizure frequency in an animal model. The proposed studies will examine novel inhibitors of this pathway with the ultimate goal of identifying those that are most efficacious in reducing or preventing seizures and/or cognitive co-morbidities in an animal model of acquired epilepsy.
Challenge Awards

Multiple-year grants (2-3 years), with a maximum of $250,000, for established or early career investigators exploring cutting-edge approaches to curing epilepsy.

JULIE’S HOPE AWARD

John Huguenard, PhD and Jeanne Paz, PhD
Stanford University

“Closed-loop control of injury-induced and genetic seizures using temporally precise cell-type-specific optogenetic manipulation”

This work expands an exciting approach that delivers light to the brain to control the activity of specific cell types. Shining light on certain cells can specifically block seizures without affecting normal brain activities. The researchers plan to develop novel tools to determine causal links between the activity of specific cell types and what seizure types they regulate.

Janice Naegle, PhD
Wesleyan University

“GABAergic Interneuron Transplantation for Circuit Repair and Seizure Suppression in Temporal Lobe Epilepsy”

Investigations in mice with acquired temporal lobe epilepsy will examine whether transplants of a major inhibitory cell in the brain can suppress seizures by repairing dysfunctional neural circuits. Following transplantation, the researchers will study whether the transplanted cells suppress spontaneous seizures.

Prevention of Acquired Epilepsies Awards

Multiple-year grants (up to 3 years) to a maximum of $250,000 in support of research relevant to the prevention and treatment of acquired (post-insult) epilepsies

BRIGHTER FUTURE AWARD

Detlev Boison, PhD
Legacy Emanuel Hospital and Health Center

“Prevention of Acquired Epilepsy Through an Epigenetic Intervention”

New findings suggest that chemical changes introduced into the DNA of brain cells play a fundamental role in supporting those processes that lead to the development of epilepsy. This grant is based on the discovery that adenosine, a natural anticonvulsant in the brain, reduces these chemical changes to DNA, and thereby has the potential to reverse DNA modifications in the epileptic brain. Dr. Boison seeks to establish a new treatment paradigm to make therapeutic use of a transient dose of adenosine with the goal to prevent the development of epilepsy long-term.

Shelley Russek, PhD & Amy Brooks-Kayal, MD
Boston University & University of Colorado Denver School of Medicine

“Development of Novel JAK/STAT Inhibitors for Disease Modification in Epilepsy”

Dr. Russek and Dr. Brooks-Kayal have found that an important cellular signaling pathway is activated after brain injuries that lead to epilepsy, and that inhibiting this activation reduces subsequent seizure frequency in an animal model. The proposed studies will examine novel inhibitors of this pathway with the ultimate goal of identifying those that are most efficacious in reducing or preventing seizures and/or cognitive co-morbidities in an animal model of acquired epilepsy.
Raimondo D’Ambrosio, PhD
University of Washington
“Prevention of Posttraumatic Epilepsy with FDA-Approved Anti-Inflammatory Drugs”

The mechanisms that lead to the onset of epilepsy after head injury in humans are not known, but mounting evidence points to inflammation as a major contributor. There are numerous FDA-approved anti-inflammatory drugs which target a wide range of inflammatory mechanisms that, alone or in combination, could be antiepileptogenic. These drugs are safe and have been approved for various conditions, and could quickly enter clinical trials for the prevention of posttraumatic epilepsy, but no data are yet available to determine whether they are antiepileptogenic after head injury.

Sudden Unexpected Death in Epilepsy (SUDEP) Awards

One-year grants up to $100,000 in support of innovative studies that will provide new directions for SUDEP research

2013 CHRISTOPHER DONALTY AND KYLE COGGINS MEMORIAL

Gordon Buchanan, MD, PhD
Yale University
“Role of Vigilance State and Circadian Phase in Seizure-Related Death”

Sudden unexpected death in epilepsy (SUDEP) most commonly occurs at night, but why this happens is unknown. Dr. Buchanan and colleagues hypothesize that this may be due to sleep state-dependent and/or circadian (time-of-day) variation in the respiratory and cardiac consequences of seizures. They will employ a genetic mouse model to evaluate the effects of seizures which occur during different sleep-wake states and circadian times on breathing, heart control, and mortality.

TEAM S4 AWARD

David Paterson, PhD
Boston Children’s Hospital
“Searching for Common Gene Variants in Sudden Death in Childhood with Febrile Seizures, SIDS and SUDEP”

Sudden unexpected death in childhood associated with febrile seizures (SUDC-FS) is the sudden unexpected death of a child that has a personal and family history of fever-related (febrile) seizures. These children have many features in common with individuals dying of SUDEP and sudden infant death syndrome (SIDS), including sleep-related death and discovery in the prone position. Genetic analysis of these families, as proposed in this study, provides an excellent opportunity to identify the genes responsible for SUDC-FS and therefore also SIDS and SUDEP.

Else Tolner, PhD and Arn van den Maagdenberg, PhD
Leiden University Medical Center (LUMC), the Netherlands
“Excessive Neuronal Inhibition Changes Physiological Functions and Increases SUDEP Risk”

The research will test the hypothesis that suppression of brain activity after a seizure reflects increased neuronal inhibition and is linked to fatal outcome. They will use mouse models carrying human pathogenic gene mutations that exhibit various neurological disease features including fatal seizures. By experimentally modulating the imbalance between excitatory and inhibitory neuronal activity, they expect to aggravate or ameliorate SUDEP in the mice. Thus they hope to provide a mechanistic understanding of SUDEP pathophysiology and development of diagnostic tools for identifying susceptible individuals.

Pediatric Epilepsies Awards

Two-year grants up to $250,000 in support of research projects of relevance to the numerous debilitating and difficult to treat pediatric epilepsies

THE ROCK THE BLOCK FOR PEDIATRIC EPILEPSY RESEARCH AWARD

Edward Cooper, MD, PhD
Baylor College of Medicine
“Targeted molecular therapy for KCNQ2-associated severe pediatric epilepsy”

Potassium channels are part of the brain’s molecular machinery for electrical signaling. Mutations in the potassium channel gene KCNQ2 cause forms of epilepsy that begin within days after birth. The severity of KCNQ2-associated epilepsy varies from very mild to severe. They will develop methods for augmenting KCNQ2 activity in individuals bearing severe disease-causing mutations, using a combination of cell-based approaches and animal models.

Timothy Simeone, PhD
Creighton University
“The Critical Role of PPARgamma in Ketogenic Diet Efficacy”

Other research has shown that PPARgamma is a regulator of gene expression called PPARgamma as a mediator of KD anti-seizure efficacy. The proposed mechanisms of epilepsy and open new avenues of strategies of reducing the stringency of the KD.

Edward Cooper, MD, PhD
Baylor College of Medicine
“Targeted molecular therapy for KCNQ2-associated severe pediatric epilepsy”

Potassium channels are part of the brain’s molecular machinery for electrical signaling. Mutations in the potassium channel gene KCNQ2 cause forms of epilepsy that begin within days after birth. The severity of KCNQ2-associated epilepsy varies from very mild to severe. They will develop methods for augmenting KCNQ2 activity in individuals bearing severe disease-causing mutations, using a combination of cell-based approaches and animal models.

Timothy Simeone, PhD
Creighton University
“The Critical Role of PPARgamma in Ketogenic Diet Efficacy”

Other research has shown that PPARgamma is a regulator of gene expression called PPARgamma as a mediator of KD anti-seizure efficacy. The proposed mechanisms of epilepsy and open new avenues of strategies of reducing the stringency of the KD.

Innovator Awards

One-year grants up to $50,000 in support of the exploration of a highly innovative new concept or untested theory that addresses an important problem relevant to epilepsy

Caroline Pasha, PhD
University of Washington
“Rapid early-onset seizure detection”

Using advanced signal processing technologies, researchers seek to develop a diagnostic tool that will allow rapid detection of seizures and seizures in the chronic phase of the disease.

Christophe Heinrich, PhD and Antoine Depaulis, PhD
Grenoble Institute of Neuroscience, INSERM
“Conversion of reactive glia into neurons in Mesial Temporal Lobe Epilepsy: a new way to generate GABAergic interneurons and reduce seizure activity?”

Using yeast genetics as a tool to find new regulators of cell death, they identified an uncharacterized yeast gene with homology to a human gene mutated in children with a form of intractable epilepsy. By generating an animal model of this new epilepsy syndrome, researchers seek to translate this unique information from yeast to explain a new cause of epilepsy and to provide a model for testing new therapies.

J. Marie Hardwick, PhD
Johns Hopkins University
“Autophagy defect in epilepsy”

Using yeast genetics as a tool to find new regulators of cell death, they identified an uncharacterized yeast gene with homology to a human gene mutated in children with a form of intractable epilepsy. By generating an animal model of this new epilepsy syndrome, researchers seek to translate this unique information from yeast to explain a new cause of epilepsy and to provide a model for testing new therapies.

Antoine Depaulis, PhD
Grenoble Institute of Neuroscience, INSERM
“The Critical Role of PPARgamma in Ketogenic Diet Efficacy”

Using yeast genetics as a tool to find new regulators of cell death, they identified an uncharacterized yeast gene with homology to a human gene mutated in children with a form of intractable epilepsy. By generating an animal model of this new epilepsy syndrome, researchers seek to translate this unique information from yeast to explain a new cause of epilepsy and to provide a model for testing new therapies.

J. Marie Hardwick, PhD
Johns Hopkins University
“Autophagy defect in epilepsy”

Using yeast genetics as a tool to find new regulators of cell death, they identified an uncharacterized yeast gene with homology to a human gene mutated in children with a form of intractable epilepsy. By generating an animal model of this new epilepsy syndrome, researchers seek to translate this unique information from yeast to explain a new cause of epilepsy and to provide a model for testing new therapies.
Raimondo D’Ambrosio, PhD
University of Washington
“Prevention of Posttraumatic Epilepsy with FDA-Approved Anti-Inflammatory Drugs”

The mechanisms that lead to the onset of epilepsy after head injury in humans are not known, but mounting evidence points to inflammation as a major contributor. There are numerous FDA-approved anti-inflammatory drugs which target a wide range of inflammatory mechanisms that, alone or in combination, could be antiepileptogenic. These drugs are safe and have been approved for various conditions, and could quickly enter clinical trials for the prevention of posttraumatic epilepsy, but no data are yet available to determine whether they are antiepileptogenic after head injury.

Sudden Unexpected Death in Epilepsy (SUDEP) Awards

One-year grants up to $100,000 in support of innovative studies that will provide new directions for SUDEP research

2013 CHRISTOPHER DONALTY AND KYLE COGGINS MEMORIAL

Gordon Buchanan, MD, PhD
Yale University
“Role of Vigilance State and Circadian Phase in Seizure-Related Death”

Sudden unexpected death in epilepsy (SUDEP) most commonly occurs at night, but why this happens is unknown. Dr. Buchanan and colleagues hypothesize that this may be due to sleep state-dependent and/or circadian (time-of-day) variation in the respiratory and cardiac consequences of seizures. They will employ a genetic mouse model to evaluate the effects of seizures which occur during different sleep-wake states and circadian gene mutations that exhibit various neurological disease features including fatal seizures. By experimentally modulating the imbalance between excitatory and inhibitory neuronal activity, they expect to aggravate or ameliorate SUDEP in the mice. Thus they hope to provide a mechanistic understanding of SUDEP pathophysiology and development of diagnostic tools for identifying susceptible individuals.

TEAM S4 AWARD

David Paterson, PhD
Boston Children’s Hospital
“Searching for Common Gene Variants in Sudden Death in Childhood with Febrile Seizures, SIDS and SUDEP”

Sudden unexpected death in childhood associated with febrile seizures (SUDC-FS) is the sudden unexpected death of a child that has a personal and family history of fever-related (febrile) seizures. These children have many features in common with individuals dying of SUDEP and sudden infant death syndrome (SIDS), including sleep-related death and discovery in the prone position. Genetic analysis of these families, as proposed in this study, provides an excellent opportunity to identify the genes responsible for SUDC-FS and therefore also SIDS and SIDS.

Else Tolner, PhD and Arn van den Maagdenberg, PhD
Leiden University Medical Center (LUMC), the Netherlands
“Excessive Neuronal Inhibition Changes Physiological Functions and Increases SUDEP Risk”

The research will test the hypothesis that suppression of brain activity after a seizure reflects increased neuronal inhibition and is linked to fatal outcome. They will use mouse models carrying human pathogenic gene mutations that exhibit various neurological disease features including fatal seizures. By experimentally modulating the imbalance between excitatory and inhibitory neuronal activity, they expect to aggravate or ameliorate SUDEP in the mice. Thus they hope to provide a mechanistic understanding of SUDEP pathophysiology and development of diagnostic tools for identifying susceptible individuals.

Pediatric Epilepsies Awards

Two-year grants up to $250,000 in support of research projects of relevance to the numerous debilitating and difficult to treat pediatric epilepsies

THE ROCK THE BLOCK FOR PEDIATRIC EPILEPSY RESEARCH AWARD

Edward Cooper, MD, PhD
Baylor College of Medicine
“Targeted molecular therapy for KCNQ2-associated severe pediatric epilepsy”

Potassium channels are part of the brain’s molecular machinery for electrical signaling. Mutations in the potassium channel gene KCNQ2 cause forms of epilepsy that begin within days after birth. The severity of KCNQ2-associated epilepsy varies from very mild to severe. They will develop methods for augmenting KCNQ2 activity in individuals bearing severe disease-causing mutations, using a combination of cell-based approaches and animal models.

THE VOGELSTEIN PEDIATRIC EPILEPSY AWARD

Timothy Simeone, PhD
Creighton University
“The Critical Role of PPARgamma in Ketogenic Diet Efficacy”

Elucidating the critical mediator(s) of ketogenic diet (KD) efficacy will further understanding of the basic mechanisms of epilepsy and open new avenues of drug discovery. To this end, recent findings implicate a regulator of gene expression called PPARgamma as a mediator of KD anti-seizure efficacy. The proposed studies will test investigational drugs, determine relevant functional mechanisms and explore possible strategies of reducing the stringency of the KD.

Innovator Awards

One-year grants up to $50,000 in support of the exploration of a highly innovative new concept or untested theory that addresses an important problem relevant to epilepsy

THE ROCK THE BLOCK FOR PEDIATRIC EPILEPSY RESEARCH AWARD

J. Marie Hardwick, PhD
Johns Hopkins University
“Autophagy defect in epilepsy”

Using yeast genetics as a tool to find new regulators of cell death, they identified an uncharacterized yeast gene with homology to a human gene mutated in children with a form of intractable epilepsy. By generating an animal model of this new epilepsy syndrome, researchers seek to translate this unique information from yeast to explain a new cause of epilepsy and to provide a model for testing new therapies.

Christophe Heinrich, PhD and Antoine Depaulis, PhD
Grenoble Institute of Neuroscience, INSERM
“Conversion of reactive glia into neurons in Mesial Temporal Lobe Epilepsy: a new way to generate GABAergic interneurons and reduce seizure activity?”

Mesio-Temporal Lobe Epilepsy (MTLE), the most common form of intractable epilepsy, is associated with loss of inhibitory neurons and proliferation of glial cells, both of which have been suggested to play a critical role in epilepsy development. Therefore, a procedure to reverse these changes represents an innovative strategy to reduce seizures. If successful, this approach could prevent epilepsy development and/or attenuate seizures in the chronic phase of the disease.
John Wolf, PhD
University of Pennsylvania
“Network and Axonal Mechanisms Underlying the Transition to Post-Traumatic Epilepsy Following Repetitive Mild Traumatic Brain Injury (Concussion)”

There is an increased risk of epilepsy onset following a mild traumatic brain injury (concussion). However, the mechanisms underlying this process are unknown. They are therefore evaluating circuitry changes over time after injury and are testing a promising intervention that blocks inflammatory processes contributing to circuit dysfunction in the hippocampus. Establishing a mechanistic link between repetitive concussions and epilepsy would be a powerful way to reduce the number of new epilepsy cases.

Hiroki Taniguchi, PhD
Max Planck Florida
“Towards a chandelier cell-based cure for epilepsy”

Development of novel strategies to safely cure epilepsy is urgent for both clinical and basic neuroscientists. Chandelier cells are the most powerful inhibitory neurons, and they can be useful for a cell transplantation therapy to reduce seizures. First, they will test if transplantation of chandelier cells into an animal model of epilepsy can reverse the seizure phenotype. Second, they will identify genetic programs that specifically lead to the development of chandelier cells.

Bruce Hermann, PhD
University of Wisconsin, Madison
Matti Sillanpaa, MD, PhD
University of Turku, Finland
“Brain Aging in Persons with Childhood Onset Epilepsy: A Population Based Investigation”

The purpose of this project is to characterize patterns of cognitive and brain aging in persons with childhood onset epilepsy. This issue is addressed in a unique population-based cohort from Finland consisting of healthy individuals and persons with childhood onset epilepsies followed since childhood/adolescence, now 45-62 years old. For this project the cohort is returning for assessment of memory and other cognitive abilities, sophisticated neuroimaging to examine brain structure and function, EEG, and detailed interview. The results will provide unprecedented insights into the very long term cognitive and brain health of persons with childhood epilepsies.

Thomas McCown, PhD
University of North Carolina, Chapel Hill

Seizures impair the function of several types of cells in the brain. Specifically, impairment of the astrocyte cells leads to an environment that favors further seizure activity. To date, no means exist to efficiently express genes in astrocytes that could restore normal cellular function. If successful, this project has far reaching implications for epilepsy therapy. With an established astrocyte selective therapy, the potential exists to reverse the pro-seizure environment and subsequently prevent seizure activity.

Nigel Jones, PhD
University of Melbourne
“DNA methylation in epilepsy”

In cases of acquired epilepsy, such as those resulting from head injury, the levels of many different proteins within the brain change dramatically. This experimental research will investigate an overarching molecular mechanism which mediates these wide-spread changes in protein expression following brain injury, and will determine whether blocking this mechanism can prevent the negative impact these protein changes exert on the brain. It is hoped that by providing a pharmacological intervention immediately following head injury in patients, they can prevent the changes in protein expression within the brain from occurring, and ultimately stop the development of the epilepsy following the injury.

Yevgeny Berdichevsky, PhD
Lehigh University
“IGF-1 signaling in posttraumatic epileptogenesis”

Traumatic brain injury activates complex molecular signals in surviving neurons. Some of these signals are thought to cause posttraumatic epilepsy. This project relies on high-throughput bioengineering methods to identify the precise roles that these signaling molecules play in the development of epilepsy. The goal is to find a combination of signaling pathways that could be inhibited for complete prevention of epilepsy with minimal side effects.

Taking Flight Awards

One-year grants up to $100,000 to help promote the careers of young investigators and support them as they develop an independent research focus

Nigel Jones, PhD
University of Melbourne
“DNA methylation in epilepsy”

There is an increased risk of epilepsy onset following a mild traumatic brain injury (concussion). However, the mechanisms underlying this process are unknown. They are therefore evaluating circuitry changes over time after injury and are testing a promising intervention that blocks inflammatory processes contributing to circuit dysfunction in the hippocampus. Establishing a mechanistic link between repetitive concussions and epilepsy would be a powerful way to reduce the number of new epilepsy cases.

Hiroki Taniguchi, PhD
Max Planck Florida
“Towards a chandelier cell-based cure for epilepsy”

Development of novel strategies to safely cure epilepsy is urgent for both clinical and basic neuroscientists. Chandelier cells are the most powerful inhibitory neurons, and they can be useful for a cell transplantation therapy to reduce seizures. First, they will test if transplantation of chandelier cells into an animal model of epilepsy can reverse the seizure phenotype. Second, they will identify genetic programs that specifically lead to the development of chandelier cells.
John Wolf, PhD
University of Pennsylvania
“Network and Axonal Mechanisms Underlying the Transition to Post-Traumatic Epilepsy Following Repetitive Mild Traumatic Brain Injury (Concussion)”

There is an increased risk of epilepsy onset following a mild traumatic brain injury (concussion). However, the mechanisms underlying this process are unknown. They are therefore evaluating circuitry changes over time after injury and are testing a promising intervention that blocks inflammatory processes contributing to circuit dysfunction in the hippocampus. Establishing a mechanistic link between repetitive concussions and epilepsy would be a powerful way to reduce the number of new epilepsy cases.

Hiroki Taniguchi, PhD
Max Planck Florida
“Towards a chandelier cell-based cure for epilepsy”

Development of novel strategies to safely cure epilepsy is urgent for both clinical and basic neuroscientists. Chandelier cells are the most powerful inhibitory neurons, and they can be useful for a cell transplantation therapy to reduce seizures. First, they will test if transplantation of chandelier cells into an animal model of epilepsy can reverse the seizure phenotype. Second, they will identify genetic programs that specifically lead to the development of chandelier cells.
2013 Donors

CURE thanks the following individuals, organizations and corporations that generously supported our mission during this fiscal year.

$250,000 – Constance Bristle & Family
John & Barbara Vogelstein Foundation

$100,000 – $249,999
Anonymous
Barbara & Joel Marcus

$25,000 – $49,999
Judy & Scott Leisher
Dorothy & Mark Doyle

$10,000 – $24,999
Linda & Richard Price
Karen K. Dixon & Nan Schefter
Lois & Leonard Sharzer
Beth & David Shive
University of Chicago Medicine
UCB

$2,500 – $9,999
Jody & Mark Furlong
Beth, Phil, Kristine, Leigh

$1,000 – $2,499
GCM Grosvenor
Gardiner & Nicholas Lapham

The Joel & Lisa Benenson

Chevron USA
Heidi & Craig Albert

$5,000 – $9,999
Eisai Inc.
Fred Eychaner

$2,500 – $4,999
BMO Harris Bank
Barbara & Joel Marcus

$1,000 – $2,499
John & Barbara Vogelstein

$50,000 – $99,999
Lois & Leonard Sharzer

$25,000 – $49,999
John Del Casco
April & Mark DeMoss
DePaul University
Development Specialists

$10,000 – $24,999
Andrews Therapeutics
AKPD

$5,000 – $9,999
Godfrey, pItem, Amy & Bernard Stein

$1,000 – $2,499
The University of Chicago

37
CURE thanks the following individuals, organizations and corporations that generously supported our mission during this fiscal year.

$250,000 – $249,999
- Constance Billiotte & Family
- John & Barbara Vogelstein Foundation

$100,000 – $249,999
- Anonymous
- Barbara & Joel Marcus

$50,000 – $99,999
- John & Barbara Vogelstein
- Karen K. Dixon & Thomas F. Hynes

$25,000 – $49,999
- CURE
- Chicago Community Trust

$10,000 – $24,999
- UCB
- Beth & David Shaw

$5,000 – $9,999
- Jodi & Gary Beasley

$2,500 – $4,999
- Loretta & Walter Anderson

$1,000 – $2,499
- Anonymous

All names are listed in alphabetical order by family name.
CURE Board of Directors

Susan Axelrod*
Founding Chair
Chicago, Illinois

Craig Albert
Chicago, Illinois

Ann Benschoter
Pewaukee, Wisconsin

Carol Fulp
Boston, Massachusetts

Paul Heldman
Cincinnati, Ohio

Thomas F. Hynes*
Treasurer
Chicago, Illinois

Gardiner Lapham*
Board Chair
Washington, D.C.

Scott Leisher
Wilmette, Illinois

Greg Lovisa*
Secretary
Ann Arbor, Michigan

Joel Marcus
Los Angeles, California

Constance Milstein
Washington, D.C.

Evelyn Nussenbaum
Berkeley, California

Sharon O’Keefe
Chicago, Illinois

C. Renzi Stone
Oklahoma City, Oklahoma

*Member of Executive Committee

CURE Scientific Advisory Board
CURE’s Scientific Advisory Board (SAB) is a visionary team that advises CURE on the state of epilepsy research, how CURE’s research portfolio fits within it, and on the most promising future directions and initiatives that will drive the search for cures. CURE is immensely grateful to these individuals, who volunteer their time and expertise to help CURE achieve its mission.

Anne Anderson, MD
Baylor College of Medicine

Douglas Coulter, PhD
University of Pennsylvania

Vicky Holets
Whittmore, PhD
NINDS Liaison

Jong Rho, MD
University of Calgary

Harald Sontheimer, PhD
University of Alabama Birmingham

CURE Lay Review Council
The CURE Lay Review Council (LRC) is made up of people with epilepsy, or the loved ones of people with epilepsy, who have a special interest in understanding epilepsy research. Members of the LRC participate in CURE’s grant review process and read research proposals from a lay perspective so that the stakeholder point of view is critically represented.

Blake Cunneen
Chicago, Illinois

Shalee Cunneen
Chicago, Illinois

Tyler Katz
Pepper Pike, Ohio

David Kovar
Chicago, Illinois

Elizabeth Kovar
Chicago, Illinois

Debbie Kirshner
Cincinnati, Ohio

Sibernie Morrison
Rego Park, New York

Stacey Pigott
Chicago, Illinois

Allison Putala
Washington, D.C.

Kristin Seaborg
Verona, Wisconsin

Linda Sudlesky
Brookline, Massachusetts

CURE Team

Robin Harding
Chief Executive Officer

H. Steve White, PhD
Research Director

Julie Milder, PhD
Associate Research Director

Tracy Dixon-Salazar, PhD
Associate Research Director

Elizabeth Higgins
Grants Administrator

Samantha Kreindel
Communications Director

Eric Dowland
Outreach Manager

Jillian Sitar
Outreach Coordinator

John Boston
Administrative Assistant
CURE
Board of Directors
Susan Axelrod*
Founding Chair
Chicago, Illinois
Craig Albert
Chicago, Illinois
Ann Benschoter
Pewaukee, Wisconsin
Carol Fulp
Boston, Massachusetts
Paul Heldman
Cincinnati, Ohio
Thomas F. Hynes*
Treasurer
Chicago, Illinois
Gardiner Lapham*
Board Chair
Washington, D.C.
Scott Leisher
Wilmette, Illinois
Greg Lovis*
Secretary
Ann Arbor, Michigan
Joel Marcus
Los Angeles, California
Constance Milstein
Washington, D.C.
Evelyn Nussenbaum
Berkeley, California
Sharon O’Keefe
Chicago, Illinois
C. Renzi Stone
Oklahoma City, Oklahoma
*Literary Director
*Member of Executive Committee

CURE
Scientific Advisory Board
CURE’s Scientific Advisory Board (SAB) is a visionary team that advises CURE on the state of epilepsy research, how CURE’s research portfolio fits within it, and on the most promising future directions and initiatives that will drive the search for cures. CURE is immensely grateful to these individuals, who volunteer their time and expertise to help CURE achieve its mission.

Anne Anderson, MD
Baylor College of Medicine
Douglas Coulter, PhD
University of Pennsylvania
Vicky Holets Whittemore, PhD
NINDS Liaison
Jong Rho, MD
University of Calgary
Harald Sontheimer, PhD
University of Alabama Birmingham

CURE
Lay Review Council
The CURE Lay Review Council (LRC) is made up of people with epilepsy, or the loved ones of people with epilepsy, who have a special interest in understanding epilepsy research. Members of the LRC participate in CURE’s grant review process and read research proposals from a lay perspective so that the stakeholder point of view is critically represented.

Blake Cunneen
Chicago, Illinois
Shalee Cunneen
Chicago, Illinois
Tyler Katz
Pepper Pike, Ohio
David Kovar
Chicago, Illinois
Elizabeth Kovar
Chicago, Illinois
Deblos Kirshner
Cincinnati, Ohio
Sibemoe Morrison
Rego Park, New York
Stacey Pigott
Chicago, Illinois
Allison Putala
Washington, D.C.
Kristin Seaborg
Verona, Wisconsin
Linda Sudlesky
Brookline, Massachusetts

CURE
Team
Robin Harding
Chief Executive Officer
H. Steve White, PhD
Research Director
Julie Milder, PhD
Associate Research Director
Tracy Dixon-Salazar, PhD
Associate Research Director
Elizabeth Higgins
Grants Administrator
Samantha Koindel
Communications Director
Eric Dowland
Outreach Manager
Jillian Sier
Outreach Coordinator
John Boston
Administrative Assistant