Jeavons Syndrome Awareness Day 2023

Join us in marking the first Jeavons Syndrome Awareness Day in 2023! CURE Epilepsy is honored to start this awareness day to help shed light on one of the many rare epilepsies. Learn more about Epilepsy with Eyelid Myoclonia (EEM), formerly known as Jeavons syndrome, and share resources below with your community to help raise awareness. All the graphics found on this page can be accessed here so you can easily download and share them. Don’t forget to wear blue on November 13 for Jeavons Syndrome Awareness Day!

Why is awareness important?
Jeavons syndrome is a rare epilepsy (so it is less known) and it is commonly misdiagnosed!

Download infographics on Jeavons syndrome here to share with your family and friends to help raise awareness.

What is Jeavons Syndrome?

Epilepsy with eyelid myoclonia (EEM), also known as Jeavons syndrome, is a rare, generalized epilepsy syndrome with onset usually occurring between 1 to 15 years of age, with peak onset between 6 to 8 years of age. Children typically present with prominent eyelid myoclonia, which is a jerking or flickering up of the eyelids associated with the eyes rolling up, typically occurring many times in a single day. Eyelid myoclonia may be associated with absence seizures and eye closure sensitivity. Other seizure types may be present in people with EEM as well. Females are affected more than males at a 2:1 ratio.

 

Seizing Life Podcast Episode

Hear about Jeavons syndrome from a young woman with Jeavons syndrome who was also a summer intern for CURE Epilepsy.

Webinar: Epilepsy with Eyelid Myoclonia (EEM), Formerly Known as Jeavons Syndrome: Diagnosis and Treatment of this Rare Photosensitive Epilepsy

Watch the recording or read the transcript of our webinar on Jeavons syndrome. In this webinar, attendees learn how to recognize the clinical features of EEM, as well as how to differentiate it from other epilepsy syndromes.  The webinar also reviews the consensus first-line treatments for EEM.

 

CURE Epilepsy Discovery: CURE Epilepsy’s Efforts Lead to an Increased Understanding of Epilepsy with Eyelid Myoclonia (EEM)

Read one of the latest CURE Epilepsy Discoveries that is focused on CURE Epilepsy’s work on EEM.

Webinar: Epilepsy with Eyelid Myoclonia (EEM), Formerly Known as Jeavons Syndrome: Diagnosis and Treatment of this Rare Photosensitive Epilepsy

Epilepsy with eyelid myoclonia (EEM), formerly known as Jeavons syndrome, is a type of rare absence epilepsy characterized by a brief but intense and repeated jerking of the eyelids. Seizures can be triggered by bright and/or flickering lights and can be associated with abnormal EEG patterns.

EEM most often starts in children aged between 6 and 8 years and is more prevalent in girls than boys.

In this webinar, attendees learn how to recognize the clinical features of EEM, as well as how to differentiate it from other epilepsy syndromes.  The webinar also reviews the consensus first-line treatments for EEM.

 


Download Full Transcript

 

About the Speaker:

Kelsey M. Smith, MD is an Assistant Professor of Neurology and epileptologist at Mayo Clinic in Rochester, MN. Her clinical and research interests include genetic generalized epilepsy syndromes including EEM, autoimmune-associated seizure disorders, and women with epilepsy. She is the first author of multiple publications that address the diagnosis and treatment of EEM.


Q&A with Dr. Kelsey M. Smith

We’ve talked about the difficulty of controlling seizures in this epilepsy syndrome. Since it is hard to treat, what level of control should be expected and how do we know when to consider a new or an additional treatment or medication?

I think that that’s a great question and it’s a question that I think should be very individualized and depends on the patient itself. So it depends on what a patient’s goals are. If the patient really wants to be driving, then we need to try to escalate therapy to the point where the patient isn’t losing awareness where that could be safe and also a risk-benefit ratio of trying a new anti-seizure medication. And so, I try and just have a discussion with my patient to see and for us to agree on that difficult question.

Does the VNS or DBS work for this syndrome?

So there’s limited data out there. In our series, we did have some patients who had VNS implanted from our 30 patients we published in 2018. I have personally seen some patients who’ve had some nice response to vagus nerve stimulation, but I would just say we don’t have enough knowledge. Deep brain stimulation as well, there’s even less knowledge on. There’s actually one case report of responsive neurostimulation to the thalamus, which is similar to deep brain stimulation. Deep brain stimulation is advancing in areas of generalized epilepsy, but there’s just not as much experience in generalized epilepsy. So that also includes epilepsy with eyelid myoclonia. It’s definitely an area of research and we should know more in the coming years.

It’s perplexing about lamotrigine. In your talk, you talk about lamotrigine works and can be prescribed, but sodium channels as a rule are not prescribed. So can you explain that dichotomy since?

I’ll try. And this is not just for epilepsy with eyelid myoclonia where there’s this dichotomy. So we know that lamotrigine works for some generalized epilepsy syndromes. We use it in multiple generalized epilepsy syndromes. It can make myoclonic seizures worse. There’s some good data for that. And there’s some debate about the eyelid myoclonia being just myoclonus of the eyes. But also, we know works usually well for the generalized tonic-clonic seizures and these generalized epilepsy syndromes. And that’s probably due to other properties than just the sodium channel blocking properties. And so, I think it’s a bit of a balance. If a patient has a lot of extremity myoclonus, that’s something to consider when starting the lamotrigine. But still typically, it’s one of our go-to medicines for generalized epilepsies despite its sodium channel, part of its action being at the sodium channel.

Have combinations of medications been trialed for effectiveness against DEM? This person has seen some better control during medication transitions when there may be multiple meds on board. Is there any evidence for that? ?

There’s no great evidence for that to, most of the studies looking at epilepsy with eyelid myoclonia are retrospective studies. And it can be hard when you look at some of that data for the confounding factors of multiple medications. It wouldn’t surprise me if there is sometimes a combination that works better balancing the eyelid myoclonia and things like that. But we just don’t have enough data to say, I would say. There’s a couple of retrospective series that puts some of the combinations together, but that data is limited and half interpreted.

So, there are some new medications available now. Is there any knowledge about how well Xcopri might work?

There was a series published actually out of Mayo by one of our fellows, Shruti Agashe, looking at Xcopri or cenobamate in generalized epilepsies. And I believe there was one patient with epilepsy with eyelid myoclonia in that. So obviously very limited data. There are studies that are hoping, my understanding is to study cenobamate or Xcopri in generalized epilepsies, and we don’t have the results from those in general. So I just don’t think we have enough knowledge at this time.

 

The information contained herein is provided for general information only and does not offer medical advice or recommendations. Individuals should not rely on this information as a substitute for consultations with qualified healthcare professionals who are familiar with individual medical conditions and needs. CURE Epilepsy strongly recommends that care and treatment decisions related to epilepsy and any other medical condition be made in consultation with a patient’s physician or other qualified healthcare professionals who are familiar with the individual’s specific health situation.

“Treatment Talk”


CURE Epilepsy is proud to present our inaugural “Treatment Talk”, a social-media broadcast highlighting conditions related to epilepsy and options available for treatment of related seizures and their side effects. This “Treatment Talk” will focus on Lennox-Gastaut Syndrome (LGS), a severe form of childhood epilepsy that arises during infancy or early childhood, and the use of the drug fenfluramine to treat patients diagnosed with LGS. This talk features Dr. Michael Chez, a pediatric neurologist at Sutter Health, and Heather Bushey, a parent whose son has LGS and is a patient of Dr. Chez. Viewers will learn more about how LGS is diagnosed, common seizure types and comorbidities associated with LGS, how fenfluramine works to reduce some of these seizure types, and any risks and benefits found in recent clinical trials featuring fenfluramine.

This talk was presented in partnership with UCB.

Webinar: Speaking About SUDEP: Arming the Rare Epilepsy Community with the Latest Research

Sudden Unexpected Death in Epilepsy (SUDEP) affects approximately 1 in 1,000 people with epilepsy, regardless of age 1,2. While lack of seizure control and seizure severity are the most common concerns for increased risk of SUDEP, there is also a concern that certain genetic mutations may increase SUDEP risk.   

This webinar will discuss what we know about SUDEP, specifically in the rare epilepsy community, as well as what parents and caregivers of children with rare epilepsies should know about SUDEP prevention and ways to mitigate risk. Presenters will share ideas on how to discuss SUDEP with doctors, from both the perspective of a physician and a parent of a child diagnosed with a rare genetic epilepsy who has educated themselves about SUDEP and taken steps to reduce the risk of SUDEP for their child. Attendees will have the opportunity to ask questions to all presenters. The webinar will also include a discussion about the latest advancements in basic and clinical epilepsy research focused on SUDEP risk and prevention.  

The webinar is intended for people living with epilepsy, their family members and caregivers, and anyone seeking to learn more about mental health and epilepsy.  

This webinar is conducted in partnership with our friends at PAME and Wishes for Elliott.

The mission of Partners Against Mortality in Epilepsy (PAME) is to convene, educate and inspire all stakeholders – from the bereaved to those living with epilepsy, to health care professionals, advocates, clinical and basic scientists, and death investigators – to promote understanding and drive prevention of epilepsy-related mortality.   

Wishes for Elliott is a non-profit organization dedicated to supporting research to improve the lives and prognosis of children struggling with SCN8A mutations and similar rare epilepsies. Their collaborative DEE-P Connections project partners with more than 40 rare epilepsy groups to help educated and bring critical resources to families who have children severely affected by these disorders.

1 Sveinsson O, Andersson T, Carlsson S, Tomson T. The incidence of SUDEP: A nationwide population-based cohort study. Neurology. 2017 Jul11;89(2):170-177.

2 Keller AE, Whitney R, Li SA, Pollanen MS, Donner EJ. Incidence of sudden unexpected death in epilepsy in children is similar to adults. Neurology. 2018 Jul 10;91(2):e107-e111.


Download Full Transcript

 

About the Speaker:
Dr. Lhatoo is a neurologist and neurophysiologist with expertise in the medical and surgical management of intractable epilepsy. He has been a director for Level-IV epilepsy centers in the UK and USA since 2006 and an instructor for the International Stereo EEG course since its inception in 2010. Dr. Lhatoo serves as the head of the International League Against Epilepsy’s Task Force for Big Data in Epilepsy. He has a particular interest in the epidemiology, phenomenology, and pathogenesis of SUDEP. His published work has described potential biomarkers of SUDEP, including post-ictal generalized EEG suppression (PGES) in SUDEP cases, post-ictal hypotension, post-convulsive central apnea, and ictal central apnea.

 


Q&A with Dr. Lhatoo

How did you find out about SUDEP?

I’ll tell you just now is what I’ve learned about SUDEP was right here on this call with you. I didn’t think it applied to us. It wasn’t until my son’s third birthday when another one of our little buddies in our group, Emma, passed away in her sleep. She had a seizure, and they found her, I think, with her head in the pillow, and it was devastating. It was that point on that my husband and I started monitoring Lincoln, and we had a hospital grade monitor. We hooked him up every night. It used to be that we would only monitor his breathing when he was sick, when we knew that he was compromised, but from that night on, we have put Lincoln on his stat monitor every single night.

I didn’t even know that it was because of SUDEP, still. I wasn’t associating that with Emma’s passing or anything like that. We just knew we needed to monitor him. It’s not a conversation that we had with our doctors. Honestly, I thought that Lincoln has lived through so many thousands of seizures that one couldn’t possibly be the one to take him out, for lack of better terminology. I think I thought that was a non-issue. Like, “No, he’s just had lots of seizures, and he’s okay. He comes out of them.”

I’m realizing now, thanks to the doctor’s presentation, that Lincoln fits all those boxes, and we’re not going to have seizure freedom. We’re going to keep working for it, but he is very high risk. I’m comforted knowing that we’re doing what we can, and I even have questions for the doctor myself. We happened upon a solution. We can’t prevent it, but monitoring Lincoln and keeping him in our room is something that we’re comfortable with in doing what we can

Can you comment on successful ways that parents have brought this issue to your attention. I know you’re very attuned to all of this, but what recommendations do you have for parents who want to talk about this and don’t know how to bring it up?

I think the way in which patients have proactively asked me, it’s often me discussing SUDEP with patients and their carers, but every once in a while a proactive parent or a proactive carer or a patient himself or herself will bring this up to me. It’s a very direct and inoffensive question, which is, “What is the risk of something bad happening to me?” It’s a straightforward question that deserves a straightforward answer.

Most of us who have observed a grand mal seizure to occur will know that a lot of the time patients do turn a little blue around the lips and don’t breathe very well after a seizure. What does that mean to that individual? I think it’s a very important question to be asked and to be addressed. A lot of the time is the answer is reassuring. Sometimes it is okay. These are the specific things that need to look out for, and this is how you can be careful.

What do you recommend for children and teens who want to sleep alone? Is there a specific type of monitoring device, either that they wear or that is connected to the bed, that’s helpful?

That’s a very, very important question. I think there was a time when we were very careful about making overbearing recommendations because teenagers in particular have to live their lives. There’s a quality of life issue, et cetera, et cetera. But we know from recent scientific studies that one of the most powerful factors that prevents death probably is the presence of somebody else in the room; whether somebody else is in the room sleeping with that particular individual or not. There’s something to be said about that kind of observation.

Of course, as you’ve already alluded to, there’s the in between of monitoring devices and a lot of my patients do use them successfully. There are a couple of FDA approved devices that are out there on the market. I personally don’t have shares in either, but there is the Empatica, the Embrace device. There’s Brain Sentinel. They both use different approaches. What they don’t do is prevent SUDEP. What they do, do is let the designated carer or person know that a seizure is occurring or has occurred. I’m an advocate for the use of whatever technology is available for mitigating risk.

Have there been any studies with SUDEP and VNS patients? If so, are there any differences in the rate of SUDEP?

Yes. Great question. There is actually a very well-known study where several thousand patients who had had VNS devices implanted were studied over a period of time. It looked as though the rate of SUDEP over a prolonged period of time actually went down in the VNS population. Over a long period of time, it may be protective against SUDEP.

This is obviously one study, but it was sufficiently powered, I think, because there were thousands of patients who were studied to say that there is probably something there. When you couple that with the fact that VNS in some individuals reduces seizure frequency, then there’s a case to be made for doing VNS in patients who have not responded to other measures. [But] I wouldn’t say that VNS alone is completely protective.

Can a CPAP or other oxygenation aid device help those with SUDEP risk factors at night during sleep?

That’s a pretty nuanced question, I have to say. When it comes to improving sleep quality in patients with epilepsy, yes, absolutely. CPAP and those things might be useful because sleep deprivation, poor sleep quality, et cetera, et cetera. These are all linked to seizure frequency, and of course, seizure frequency is linked to SUDEP.

In somebody who’s having a seizure and may be likely to suffer from SUDEP, would CPAP prevent that? Probably not, and I say that for number reasons. Chief among those being that, in a convulsive seizure, you can have all monitoring devices, they become dislodged, there’s a lot of movement, shaking, et cetera, et cetera. So I wouldn’t rely on CPAP for preventing SUDEP directly like that.

Should electrical stimulation of the medulla, and maybe you can explain where the medulla is, be more widely used to study or to prevent SUDEP?

The medulla is part of the brain stem, the same structure that I was talking about, and medulla probably is the most important part of the brain stem for a final common pathway to controlling breathing and cardiac rhythm and blood pressure. A very important structure. It’s a very challenging part of the brain to study in humans because to stimulate the medulla, you have to put electrode into the brain stem, and that always carries a risk of bleeding hemorrhage and so forth. The outcome of bleeding in that part of the brain stem would be catastrophic, would be death. To my knowledge, nobody has done that in humans yet, but there are researchers who are looking at stimulating other parts of the brain stem; parts of the brain stem that are maybe less risky, but at the same time, likely to impact breathing and cardiac function. There’s more to come. In the next few years, I think we will hear a lot more about brain stem stimulation

For uncontrolled seizure patients, how often would you recommend doing an EMU stay? I know that the MORTEMUS study was done using patients in the EMU.

The EMU has a very specific role. We either send patients there for diagnostic assessment. Here, we’re trying to figure out if the patient has epilepsy or a related disorder. Or, we’re trying to see what kind of epilepsy it is. That’s diagnostic EMU assessment.

Then there’s the other kind of EMU assessment, which is the presurgical assessment; studying the seizure in order to do brain surgery. It’s the latter type in which we’ve become more and more practiced at assessing cardiac and breathing function, as well. There isn’t much point in repeated EMU assessments for assessing risk. Usually, if intractability or lack of control through medication surgery has been established, then one EMU assessment where cardiac and breathing function are looked at as well is probably enough.

Here’s a question related to the rare epilepsy categorization. “Is Lennox-Gastaut a part of this group of rare epilepsies that are impacted more significantly by SUDEP?

Yes. I would say that it is. It’s one of the commoner varieties of the rare epilepsies, but Lennox-Gastaut really is a syndrome. It’s not really one specific genetic condition. Within the LennoxGastaut rubric, we actually have dozens of other conditions that make up the syndrome complex that we call Lennox-Gastaut.

You’ve talked a lot about people who may have had longterm epilepsy, lots of seizures, but there are instances where after just a handful of seizures, somebody has passed due to SUDEP. We think of some more public cases like Cameron Boyce who passed away, but there are others. Is it possible to die from SUDEP without either a diagnosis of epilepsy or a first tonic clonic seizure?

Absolutely, yes. Happily, I would say that that kind of situation where it’s not uncontrolled epilepsy is extremely rare, but it does happen. As recently as two months ago, I was contacted by colleagues in another part of the country who had just such a patient who passed after a second tonic clonic seizure. We’ve come to understand that SUDEP is actually a heterogeneous phenomenon. It’s not just one thing, and there isn’t just one prototype patient that fits that mold. There’s actually a variety of types. There are tragic cases where a first ever or a second ever seizure kills, but I have to say that that is very, very rare.

You’ve talked about the cardiac disturbances, but could you talk a little bit more about that? Does that mean cardiac arrest, or what do you mean by a cardiac disturbance or arrhythmia?

By cardiac disturbance I mean cardiac rhythm dysfunction. Cardiac rhythm can be disturbed in a variety of ways during seizures. The heart can either be too fast or too slow. When it’s too fast, it can happen in a pathological fashion; conditions that we refer to as ventricular tachycardia, ventricular fibrillation, and things like that. Those are very dangerous. In the SUDEP context that seems to happen extremely, extremely rarely. What is more common is the heart beating too slow and maybe even stopping. That’s what we refer to as bradycardia and asystole. You can imagine that after a seizure, if a patient is not breathing too well and their heart’s not beating too fast either, that their blood pressure’s not going to be great. Of course, it sets a vicious spiral that can result in an unfortunate outcome

Abby, I know that you had some questions. Now that you’ve heard this discussion, as a parent, what do you think and what sorts of questions would you be coming to your physician with now?

Abby: First off, I’m like, “Wow! It’s a miracle my son is still here!” We have prolonged QTC. He has intractable epilepsy. He’s a boy. He has cluster seizures. I’m thanking God that he’s still here.

I feel like quite a few of the questions coming in were kind of along the lines of what I was thinking. My son has a VNS, so I was worried that might be a problem.

Somebody asked about the CPAP, that’s something that I have chosen not to put on my son, but I’m wondering if I should? I’m wondering if that makes a difference breathing-wise.

My question would be the sleep studies that my son had done seem like they’re separate from EKGs, like these are two different events. I’m wondering, do I need to pursue having them done together? I’m not even quite sure what my question is. It just seems that the breathing patterns that you’re looking for are maybe things my neurologist isn’t looking at. Is my neurologist looking at that, or my epileptologist, or are they just looking at seizure activity? Are they focused in on breathing patterns? How do I know if my son’s intractable epilepsy is causing breathing issues not related to just, “Oh, his SATs dropped”?

I don’t know if that was very clear cut, but that’s kind of where I’m going. How do we get everybody together on the same page to talk about this risk?

Dr. Lhatoo: If I may just make a comment, which is, I shared some of the recent research findings with you folks today, and it is always the case that clinical practice lags a little behind what comes out in research. That’s only correct because research findings need to be validated, replicated, reproduced, and so forth before they become standard clinical practice. It is not standard clinical practice in many places to routinely measure breathing. Cardiac rhythm is done. EKG is done in most places, but breathing is not routine. I believe that it should, and there are a group of us who are strong advocates for it. Over the coming months and years, you’ll see more and more folks who will begin to do it in their epilepsy monitor units. But in sleep studies, breathing is very carefully measured, so I would imagine that your child has had that done.

 

 

The questions below were answered by Dr. Lhatoo after the webinar had finished recording to answer some of the remaining questions submitted by attendees:

Why does the risk of SUDEP increase in people with nocturnal epilepsy or people who have seizures during sleep? What makes sleep or being isolated throughout the night a risk factor? Is there any recent research you could share?

Sleep onset seizures (particularly REM sleep) seem to cause more problems in animal models of SUDEP. Sleep phases may also be associated with more tendency to autonomic dysfunction [the autonomic nervous system is what controls and regulates involuntary physiologic presses such as heart rate, blood pressure, breathing, and digestion; I believe Dr. Lhatoo is saying during sleep, these processes slow down which can increase seizure severity] and post-seizure obtundation [reduced level of consciousness after a seizure]. In some people, getting tangled up in bedclothes face down may impair recovery fatally.

What are the most promising biomarkers to identify patients at SUDEP risk, and how do we implement these into clinical care (other than the biomarkers you discussed in the webinar—eg. genetic biomarkers)?

So far, there are no biomarkers that have been proven to be useful in systematic prospective studies [a study that focuses on the development of a disease and relates it to suspected risk or protection factors; usually involves watching subjects for a long period of time], but there are several for which there is some evidence of value. These include generalized convulsive seizure frequency and post convulsive [after a convulsive seizure] bradycardia/asystole [slow heartbeat/heart stops pumping entirely due to the electrical system failing] and central apnea [breathing repeatedly stops and starts because the brain doesn’t send proper signals to the muscles that control breathing]. The best way to identify these is an epilepsy monitoring unit assessment. There are several candidate genetic biomarkers but again, none with clinical utility yet.

Does SUDEP originate from specific lobes or areas of the brain (apart from the brain stem and uncontrolled epilepsy as mentioned in the webinar)? Do we know the percentage of SUDEP victims who suffered from seizures originating in these specific lobes?

There is reasonable evidence now to say that SUDEP can occur whether the seizures are of focal (any lobe) or of generalized onset, if seizures are uncontrolled.

Is the risk of SUDEP the same if a patient experiences ictal/postictal tachycardia instead of bradycardia during seizures? I understand that any cardiac arrhythmia is a risk factor for SUDEP but multiple review papers and studies have conflicting information about what type of arrhythmia is the most dangerous—could you please help clarify this??

Post-ictal bradycardia [slow heartbeat after a seizure] is likely more dangerous than tachycardia [rapid/increased heartbeat]. This is because postictal tachycardia is extremely common; the vast majority of patients who have this feature have no problems.


The information contained herein is provided for general information only and does not offer medical advice or recommendations. Individuals should not rely on this information as a substitute for consultations with qualified health care professionals who are familiar with individual medical conditions and needs. CURE Epilepsy strongly recommends that care and treatment decisions related to epilepsy and any other medical condition be made in consultation with a patient’s physician or other qualified health care professionals who are familiar with the individual’s specific health situation.

Fenfluramine for Dravet: An Old Drug with a New Purpose

Epilepsy research has given the once-popular weight loss drug fenfluramine a new  purpose. Fenfluramine (Fintepla®) is now FDA-approved to treat Dravet syndrome, a rare, catastrophic form of  pediatric epilepsy. In this webinar, you will learn why doctors explored fenfluramine as a possible therapeutic option for epilepsy, and why it is safe and effective treatment for epilepsy in children with Dravet, as well as the potential side effects caregivers should know.

Our webinar presenter is leading-expert Dr. Joseph Sullivan, pediatric neurologist and Director of the UCSF Pediatric Epilepsy Center. He specializes in evaluating and treating children with epilepsy, particularly for those with epilepsies that do not respond to medications. In addition, he runs a specialized Dravet/PCDH19 clinic, where he cares for a large cohort of children with these types of genetic epilepsies.


Download Full Transcript

Audience Q&A with Dr. Sullivan

Can you talk about other syndromes or epilepsy types that Fintepla might be useful for or is being tested for?

There is a completed Phase 3 study with published results in Lennox-Gastaut syndrome, which also showed efficacy compared to placebo. It wasn’t as dramatic as what was seen in Dravet syndrome, but Lennox-Gastaut syndrome is a very different syndrome than Dravet syndrome. My understanding is that Zogenix will be submitting for labeling for the use of Fenfluramine in Lennox-Gastaut syndrome. I think that it definitely warrants additional study in terms of whether there are other epilepsy syndromes that this could be effective for. My colleague Elizabeth Dr. Thiele has a small study in sunflower syndrome that has also shown efficacy.

Those are three very different epilepsy syndromes. It’s very possible that fenfluramine could be a broad spectrum antiepileptic drug with sort of these favorable or more enriched responder rates in some of these syndromes. It’s our job as the clinical pediatric epilepsy community to try and figure out what would be the next target syndrome to go after.

Are there medications that help kids who have seizures related to heat or rapid body temperature changes?

We definitely know that patients with Dravet syndrome and who have SCN1A mutations do have temperature sensitivity. That’s been well documented in animal models. Interestingly, this temperature sensitivity does tend to wane over time. Adults tend not to be as temperature sensitive.

In my opinion, fenfluramine is not necessarily being effective in just those patients that have temperature sensitivities. I think this may be something where, again, there’s that enriched responder rate for Dravet syndrome, but that’s independent of this temperature sensitivity, but it’s an interesting question to ask as to whether or not there are other temperature-sensitive seizure syndromes that may be a target.

In my practice, when Dravet patients actually have a fever, even though we have no evidence to support this, we do try temperature reduction reducing measures, and for some kids we even try to give sort of benzodiazepines for 24 to 48 hours to bridge them through their fever. Again, isolated patients say, “Yes, that’s effective for my child,” but that’s not something that I recommend with every patient and certainly don’t have any scientific data to support those recommendations that I’m making.

Do you have any concerns recommending this treatment for kids with minor cardiac regurgitation after study Fintepla? My child couldn’t get into the clinical trial because of this issue.

Even in the placebo group, we saw this regurgitation. This actually created some anxiety for some of our patients who were left wondering, “Oh, no. Does my child need to see a cardiologist?” The answer is no and we’ve asked cardiologists this all across the country. Your child’s heart is normal if they have trace regurgitation, and that should not be a precaution for starting Fenfluramine now in the post-studies commercialization phase.

We don’t really see any signal to suggest that trace regurgitation – again, because it’s a normal physiologic finding – would be a risk factor for the development of valvulopathy. That finding going to be followed over time and is why I feel very comfortable that this REMS program is going to allow us to start this drug in more patients and follow that safety signal over time.

Could this drug be used in a child who is weaning off phenobarbital?

Our goal is seizure control and minimizing side effects and maximizing quality of life. I think you’d have to ask yourself, how is your child or your patient doing on phenobarbital? Phenobarbital certainly gets a bad reputation, but it does work for some patients. I would say if the patient is doing whatever you determine is okay, then I would not rock the boat. Go with what you know because while fenfluramine was effective in the majority of patients, there are some patients it’s not necessarily going to work for.

I said my new bar is 75% reduction of seizures. If the child is still having a high seizure burden and you’re questioning whether or not they are phenobarbital-related side effects, I think it would certainly be the right next step to add fenfluramine to that regimen. If the patient improves, then very, very slowly taper off some of the background drugs, That’s true for phenobarbital and that’s true for valproic acid. It’s true for any background drug.

If I’m adding a second or a third or a fourth drug to a regimen, I’m acknowledging that drugs one, two, and three are not getting that person to where they want to be. We see dramatic improvement after taking the new drug, we then have to ask ourselves, “Is the majority of that improvement all being realized from the additional drug? Can I reduce background drugs?” Unfortunately, I showed you that list of drugs that were in the Phase 3 trials. Even though there were only four to five drugs that were the most commonly used, we cannot tease out whether or not there’s like a combination that was more effective than others and I think we’ll just sort of have to realize that as more patients get started on these over time.

Are patients on Fintepla also on Epidiolex?

Epidiolex was not yet FDA-approved during our Phase III program, and any other investigational drug was not allowed in the double-blind placebo-controlled trials. Even on the open label extension, for the first six months, we really couldn’t make any changes to background medications – specifically adding of drugs because then that actually really confounds the open label extension data. Then, it just happened to align that as once Epidiolex was approved and we had more patients in the open label extension, and again, even if you were considered one of those super responders and had a 75% reduction of seizures, if you were still having seizures, the investigators did have the ability to ask the medical monitor for permission to start the drug.

In the expanded access program, I certainly have a handful of patients who are on both. It’s still been a relatively short period of time for me to be able to say with confidence how that combination working. It seems at first glance to be well tolerated. There does not seem to be significant drug-to-drug interactions, but ask me that question a year from now and I think it’s going to be exciting to report back whether or not we can see these incremental benefits of two drugs that have good Phase III controlled data to support their use in these patients.


This webinar is supported with funding from Zogenix
Zogenix