August 27, 2018
Research conducted by former CURE Grantee, Dr. Steven Schiff
Heartbeat irregularities connected to brain activity abnormalities may lead to the ability to predict eventual epileptic seizures in subjects who suffered physical or infectious brain injuries, according to Penn State researchers who studied mouse models of cerebral malaria, which often causes epilepsy in those who survive.
“We were developing, in a project led by Steven Schiff (Brush Chair Professor of Engineering in the Departments of Neurosurgery, Engineering Science and Mechanics and Physics, and director of the Center for Neural Engineering), a mouse model for epilepsy induced by cerebral malaria, a disease that causes rapid coma and death in children aged 2 to 5,” said Bruce Gluckman, professor of engineering science and mechanics, neurosurgery and biomedical engineering and associate director, Penn State Center for Neural Engineering. “Typically, with treatment, only about 80 percent of infected individuals survive. Of our mouse survivors, 75 percent developed spontaneous seizures.”
Cerebral malaria causes death and brain injuries, including epilepsy in Africa and East Asia where those strains of malaria are endemic. However, other diseases and physical trauma also cause injuries that eventually lead to epilepsy. Acquired epilepsy does not occur immediately after brain injury. Visible symptoms can occur months to years afterwards, according to Gluckman.
“Fatemeh was looking at the data for the signature of a sleep state when she noticed that there were times in the animals when they appeared to miss a heartbeat,” said Gluckman. “The beat-to-beat intervals were really long and associated with abnormal brain activity.”
Fatemeh Bahari, graduate student in engineering science and mechanics, brought the coincidence of heart and brain anomalies to Gluckman, noting that these occurred only in mice that later developed seizures.
“First I saw the beat-to-beat interval and it looked like something,” said Bahari. “I took it to Dr. Gluckman and he said ‘prove it.'”
Gluckman suggested that Bahari show, in more detail, that there was a relationship between the anomalous heart and brain readings, and also show that they could predict which mice would develop epilepsy. They report the results of that work today (Aug. 27) in the Journal of Neuroscience.