October 10, 2019

Multiple Oscillatory Push-Pull Antagonisms Constrain Seizure Propagation

entry image

Researchers at Carnegie Mellon University have discovered that the spreading of seizures through the brain can be suppressed depending on the amount of pressure within the brain, an important discovery that may revolutionize the treatment of drug-resistant epilepsy.

The lab of Department Head of Biomedical Engineering Bin He, in collaboration with Mayo Clinic, has published a study in the journal Annals of Neurology that finds that within the brain, “focal seizures”—seizures that originate at a single point—can be regulated by push-pull dynamics within the brain.

The paper, “Multiple Oscillatory Push-Pull Antagonisms Constrain Seizure Propagation,” further shows that an imbalance of excitation-inhibition activity within an epileptic network may be a promising biomarker for the secondary generalization of focal seizures. In other words, when medical professionals see indications that the excitation and inhibition of neuron firing within the brain is imbalanced, this imbalance may be an indicator as to if the seizure will propagate in the brain.

Related News