November 30, 2020

Yale study gets closer to understanding causes of severe treatment-resistant epilepsy

Article, originally published by Yale Daily News

A recent study by researchers at the Yale School of Medicine found that mice injected with similar gene mutations as humans who have some severe forms of epilepsy also exhibited very similar brain malformations as the humans.

The researchers investigated two severe epilepsy disorders that result from two neurodevelopmental disorders called focal cortical dysplasia and tuberous sclerosis complex. These severe forms of biological epilepsy appear in humans shortly after birth, leading to sudden recurrent seizures and brain damage. These forms of severe epilepsy are not easily treatable with normal anti-epilepsy medications. The similar brain malformations from the mutations in both the human and mice brains helped the scientists identify the protein, called HCN4, and the molecular pathway, called mTOR, that are key factors in causing these epilepsies, thereby helping them get closer to finding treatments for the conditions.

“About 35 to 40 perecent of patients with epilepsy are resistant to medication,” Dennis Spencer, an expert in Epilepsy Surgery at the Yale School of Medicine, told the News. “[Epilepsy is] very heterogeneous and so many patients who have epilepsy are resistant to medication and the medications that are used today are also quite heterogeneous.”